

Sensor

- Transduces energy into measure
- Measures a physical quantity (light, force, speed, ...)
- Provides window into the world and robot

Sensor

- Transduces energy
- Measures a physical quantity (light, force, speed, ...)
- Provides window into the world and oneself
 - BMI088: 3 axis accelerometer / gyroscope ()
 BMP388: high precision pressure sensor
 VL53L1x ToF sensor to measure distance up to 4 meters
 PMW3901 optical flow sensor

Sensors in ROS

- <u>Component</u> support for
 Range finders
 Cameras
 Audio
- Pose
 Power
- <u>Sensor messages</u>
- Sensor messages
 Cample for images
 Cample for images

 Cample for images

 Cample for image

 Cample for image

Sensor Classification

- Proprioceptive (internal state) sense of itself Measures values internally to the system Battery level, wheel position, gyro
- Exteroceptive (external state) sense the world
- Observations of environment

Sensor Classification

- Proprioceptive (internal state) Measures values internally to the system
 Battery level, wheel position, gyro
 - Observations of environment

Active (emits energy)

Sensor Classification

- Proprioceptive (internal state)
 - Measures values internally to the system
 Battery level, wheel position, gyro
- Exteroceptive (external state) Observations of environment
- Active (emits energy) Optical encoder
 Radar

Sensor Classification

- Optical encoder
 Radar • Exteroceptive (external state)
 - Compass
- Active (emits energy) • Passive (passively receives energy)
- ∘ Camera ∘ Bump

Question: how the Crazyflie sensors?

- BM1088: 3 axis accelerometer / gyroscope (): Pr/Pa
 BMP388: high precision pressure sensor: E/Pa
 <u>V15311x ToF</u> sensor to measure distance up to 4 meters: E/Ac
 PMW3901 optical flow sensor: E/Pa

Sensor Classification

Compass

- Measures values internally to the system Battery level, wheel position, gyro
- Exteroceptive (external state)
 Observations of environment
 - ∘ Camera ∘ Bump

Active (emits energy)

Optical encoder
 Radar

• Passive (passively receives energy)

Question: how the Crazyflie sensors?

- BM088: 3 axis accelerometer / gyroscope (): Pr/Pa
 BMP388: high precision pressure sensor: E/Pa
 VI_5311: Tofi sensor: to measure distance up to 4 meters: E/Ac
 PMW3901 optical flow sensor: E/Pa

Sonar, ultrasonic, range scanners:

- Pulse of sound is emitted from some source
 Wave after bounces off any obstacles
 Echo is received by one or multiple receptors
 Signal is interpreted in various ways to obtain
 information about an obstacle

308 MODEL $d = \frac{1}{2} * v * t$ t is measured v is known cnst

Sonar, ultrasonic, range scanners: Pulse of sound is emitted from some source
 Wave after bounces off any obstacles
 Echo is received by one or multiple receptors
 Signal is interpreted in various ways to obtain
 information about an obstacle

Let's say this is ultrasonic sensor: - v= 344 m/s - If t=0.05 s then d= 8.6m

Assumptions - leaky abstractions - v= 344 m/s with dry air, 21 C, sea level - Surfaces are ...

Senso	Sensor Noise - Modified Signal							
			•	Single reading				

Sensor Noise - Modified Signal

 Single reading Belongs belong to a distribution

Sensor Noise - Modified Signal

Single readingBelong belong to a distributionOutliers

Sensor Noise - Modified Signal

Managing Sensor Noise

Calibration

Filtering

Calibration

- Shifts in distribution due to environmental assumptions
- Adjusting sensor for more accurate physical measurements within context
- Process
 - a. Conduct standardized tests
 - b. Recompute constants and error estimates
 c. Redefine model parameters

Calibration Problem

MODEL d = ½ * v * t t is measured v is known cnst

Let's say this is ultrasonic sensor: - v= 344 m/s - If t=0.05 seconds, then d= 8.6m

Assumptions - v: 344 m/s with dry air, 21 C, sea level - Surfaces are ... - When assumptions break, measures are off!

Calibration Problem

MODEL d = ½ * v * † t is measured v is known cnst

Let's say this is ultrasonic sensor: - v= 344 m/s - If t=0.05 seconds, then d= 8.6m

Assumptions - v: 344 m/s with dry air, 21 C, sea level -4.8 - Surfaces are ... - When assumptions break, measures are off!

TENTERATURE SPEED of 201 Calogy (C) m/ 201 - 201 201 201 201 201 201

ALTITUDE

Meter (m)

Calibration Problem				
		ALTITUDE	TEMPERATURE	SPEED OF SOUL
MONEL		Meter (m)	Celcius (°C)	m/s
d = ½ * v * †		0 (sea level)		
t is measured v is known cnst		3048 (10k R)		
Let's say this is ultrasonic sensor:		9144 (30k ft)		
 If t=005 seconds, then d = #### 82# Assumptions v: 344 m/s with dry air, 81 6, sectors 4.8 Surfaces are When assumptions break, measures are offl 				

Basic Filters from Signal Processing

- Low-pass filte
- Band filters

Filtering as smoothing

- Moving averages
 - Yt = (Xt + Xt-1 + Xt-2 + ... + Xt-window) / windowSize

Filtering as smoothing

- Moving averages
 - Yt = (Xt + Xt-1 + Xt-2 + ... + Xt-window) / windowSize

Filtering as smoothing

• Moving averages $Yt = (Xt + Xt - 1 + Xt - 2 + _ + Xt - window) / window Size$... 64 65 64 78 65 66 67 64 ... 64 69 window Size = 3

Filtering as smoothing

Moving averages

Yt = (Xt + Xt-1 + Xt-2 + ... + Xt-window) / windowSize

Filtering as smoothing

Moving averages

Yt = (Xt + Xt-1 + Xt-2 + ... + Xt-window) / windowSize

Filtering as smoothing

Filtering as smoothing

Moving averages

Yt = (Xt + Xt-1 + Xt-2 + ... + Xt-window) / windowSize

Generalized with weights for decaying

Yt = a Xt + a1 Xt-1 + a2 Xt-2 + a3 Xt-3 + ... where a+a1+a2+a... = 1

Filtering as smoothing

- Moving averages
 - Yt = (Xt + Xt-1 + Xt-2 + ... + Xt-window) / windowSize
- Generalized with weights for decaying
- Generalized with exponential weights for decaying $\label{eq:constraint} Yt=a~[Xt+(1-a)~Xt-1+(1-a)^*2~Xt-2+(1-a)^*3~Xt-3+...]$

Filtering as smoothing

Generalized with exponential weights for decaying

Yt = a Xt + (1 - a) Xt-1 + (1 - a)*2 Xt-2 + (1 - a)*3 Xt-3 + Or efficiently approximated <u>Yt = Yt-1</u> + α (Xt - Yt-1)

Selection of α is crucial

 α closer to 0: closer to last value
 α closer to 1: no filtering

What if our sensor is still really noise?

What if our sensor is still really noise?

What if our sensor is still really noise? Mark developing range was upper? • What if our sensor is still really noise? • What if our sensor is still really noise?

What if our sensor is still really noise?

Second try under the second s

OR Revise Algorithm for adjusting model

G-H Filter (alpha - beta Filter)

- Predict next value & rate of change based on
 Current estimate
 Predict of how it will change
- Choose new scaled estimate between prediction and measurement
 - G scales measurements

Takeaways

- Sensors capture data about robot and world state
- We cannot rely on sensors for perfect data
- To manage noise
 - Calibration
 - Fusion
 - Filtering