CS4501
Robotics for Soft Eng
$\bullet \bullet$
Motion Planning II

Motion Problem

- Given
world space w
Obstace Regions 0
Robot State R
Stating and Ending Conifisurations 9s, q8
- Find a path that modifies R so that

Without titing any obstade 0
[other constrainst]

Model-based Approaches Produced a Graph

Bug
Dynamic window

- Model-based

Visibility
Grid
Probabilistic
Path Plaming: Vistility Methods

Path Planining Probabailisticic Roadmap

Model-based Approaches - Searching Shortest Path in Graph

- Generic

BFS (Breath First)
DFS (Depth First)

- Informed
"Heuristic" to guide the search

Searching for a Path in a Graph: BFS

```
O O O O O O frantier = veve()
0 start 0 0 0 0 0
- - 0 0 0 0
- - - ○ - - 
0 0 0 0 0 0
0 0 0 0 0 0
```

Searching for a Path in a Graph: BFS
$\bigcirc \underset{\substack{0 \\ \text { start }}}{\circ}$

- 0 ○ 0 - 0
- 0 - $0 \quad 0 \quad 0 \quad 0$
$\bullet \circ \circ \circ \circ \circ \circ$

Searching for a Path in a Graph: BFS
Searching for a Path in a Graph: BFS

$\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$

Searching for a Path in a Graph: BFS

$$
\begin{aligned}
& 3 \text { (4) } 0 \text { (1) } 0
\end{aligned}
$$

Searching for a Path in a Graph: BFS


```
- - - - ○ - 
\bullet - • - - • - 
```


Searching for a Path in a Graph: BFS

Searching for a Path in a Graph: BFS

$\bullet \circ-0 \quad 0 \quad 0 \quad 0 \quad 0$

- • • • • ••

Searching for a Path in a Graph: BFS
Searching for a Path in a Graph: BFS

 come

Searching for a Path in a Graph: BFS
0
0

Searching for a Path in a Graph: BFS

Searching for a Path in a Graph: BFS

Searching for a Path in a Graph: BFS

Searching for a Path in a Graph: BFS

Searching for a Path in a Graph: BFS

Searching for a Path in a Graph: Dijkstra

Searching for a Path in a Graph: Dijkstra

Searching for a Path in a Graph: Dijkstra
Djjkstra vs Breadth-First-Search

```
\bullet\bullet००००
    O-\bullet\bullet\bullet
    - - - - .
\bullet, - . - .
    \circ
0
- Poth find shotestrath
# Both find shortest path
: Both find shortest path 
OOO
    0-00000
    0.0-0.0
```

O-

Searching for a Path in a Graph: Heuristic Search (greedy)

Searching for a Path in a Graph: Heuristic Search (greedy)
-

Searching for a Path in a Graph: Heuristic Search (greedy)

Searching for a Path in a Graph: Heuristic Search (greedy)

Searching for a Path in a Graph: Heuristic Search (greedy)

- 0 - $0 \begin{gathered}\text { whil ne fforntier enppy0: } \\ \text { currente frontieg getio }\end{gathered}$

- 0 ० 0 -

Searching for a Path in a Graph: A*

```
0 - O O O Best of both worlds
- - - - Distance from home (Dijkstra)
- - 0 0 0 0
O O O O O O
0
```

Searching for a Path in a Graph: A*

Recalculation of paths

- World changes, path may not longer be optimal or be plain obsolete
- When

Every n steps (space or time)
When landmarks are identified
When lost
When possible extra time, CPU)

- What to recalculate

Full path
partial patin
Partial path (closest) by splicing and stitching

Key data structures in ROS for motion

 Merctorat for then mpe

Occupancy Grid

Key data structures in ROS for motion

Key data structures in ROS for motion
Grid of cells - -same size cells, could be dispersed

Take Away

- Families of approaches to employ in tandem
- Reactive
- Local area and fast response

Model-based

- Big picture and long paths
- Build and searching graphs

ROS Support

