
CS4501
Robotics for Soft Eng

Motion Planning II

Sense Control Act

Physical
World

Perception Planning

Motion Problem
● Given

○ World Space W

○ Obstacle Regions O

○ Robot State R

○ Starting and Ending Configurations qs, qg

● Find a path that modifies R so that
○ From qs to qg

○ While staying in W

○ Without hitting any obstacle O

○ [other constraints]

Motion Planning Problem

qs

qg

Free

space

Obstacle

O

b
s
t
a
c
l
e

Free path

R

World

Motion Planning Families
● Reactive

○ Bug

○ Dynamic window

○ ...

● Model-based
○ Visibility

○ Grid

○ Probabilistic

○ ...

Work under different
assumptions about sensor

types and world models
available

Model-based Approaches Produced a Graph
Path Planning: Grid Methods

q

g

Path Planning: Probabilistic Roadmap

Path Planning: Visibility Methods

Model-based Approaches - Searching Shortest Path in Graph
● Generic

○ BFS (Breath First)

○ DFS (Depth First)

● Informed
○ “Heuristic” to guide the search

Searching for a Path in a Graph: BFS

frontier = Queue()
frontier.put(start)start

Searching for a Path in a Graph: BFS

frontier = Queue()
frontier.put(start)
came_from = {}
came_from[start] = None

start

Searching for a Path in a Graph: BFS

frontier = Queue()
frontier.put(start)
came_from = {}
came_from[start] = None

while not frontier.empty():
 current = frontier.get()

Searching for a Path in a Graph: BFS
4

3 1

2

frontier = Queue()
frontier.put(start)
came_from = {}
came_from[start] = None

while not frontier.empty():
 current = frontier.get()

 for next in graph.neighbors(current):

Searching for a Path in a Graph: BFS
4

3 1

2

frontier = Queue()
frontier.put(start)
came_from = {}
came_from[start] = None

while not frontier.empty():
 current = frontier.get()

 for next in graph.neighbors(current):
 if next not in came_from:
 frontier.put(next)

Searching for a Path in a Graph: BFS
4

3 1

2

frontier = Queue()
frontier.put(start)
came_from = {}
came_from[start] = None

while not frontier.empty():
 current = frontier.get()

 for next in graph.neighbors(current):
 if next not in came_from:
 frontier.put(next)
 came_from[next] = current

Searching for a Path in a Graph: BFS
4

3 1

2

frontier = Queue()
frontier.put(start)
came_from = {}
came_from[start] = None

while not frontier.empty():
 current = frontier.get()

 for next in graph.neighbors(current):
 if next not in came_from:
 frontier.put(next)
 came_from[next] = current

Searching for a Path in a Graph: BFS
4

3 1

2

frontier = Queue()
frontier.put(start)
came_from = {}
came_from[start] = None

while not frontier.empty():
 current = frontier.get()

 for next in graph.neighbors(current):
 if next not in came_from:
 frontier.put(next)
 came_from[next] = current

Searching for a Path in a Graph: BFS

frontier = Queue()
frontier.put(start)
came_from = {}
came_from[start] = None

while not frontier.empty():
 current = frontier.get()

 for next in graph.neighbors(current):
 if next not in came_from:
 frontier.put(next)
 came_from[next] = current

Searching for a Path in a Graph: BFS

frontier = Queue()
frontier.put(start)
came_from = {}
came_from[start] = None

while not frontier.empty():
 current = frontier.get()

 for next in graph.neighbors(current):
 if next not in came_from:
 frontier.put(next)
 came_from[next] = current

Searching for a Path in a Graph: BFS

frontier = Queue()
frontier.put(start)
came_from = {}
came_from[start] = None

while not frontier.empty():
 current = frontier.get()

 for next in graph.neighbors(current):
 if next not in came_from:
 frontier.put(next)
 came_from[next] = current

Searching for a Path in a Graph: BFS

frontier = Queue()
frontier.put(start)
came_from = {}
came_from[start] = None

while not frontier.empty():
 current = frontier.get()

 for next in graph.neighbors(current):
 if next not in came_from:
 frontier.put(next)
 came_from[next] = current

Searching for a Path in a Graph: BFS

frontier = Queue()
frontier.put(start)
came_from = {}
came_from[start] = None

while not frontier.empty():
 current = frontier.get()

 for next in graph.neighbors(current):
 if next not in came_from:
 frontier.put(next)
 came_from[next] = current

Searching for a Path in a Graph: BFS

frontier = Queue()
frontier.put(start)
came_from = {}
came_from[start] = None

while not frontier.empty():
 current = frontier.get()
 if current == goal:
 break
 for next in graph.neighbors(current):
 if next not in came_from:
 frontier.put(next)
 came_from[next] = current

Searching for a Path in a Graph: BFS

frontier = Queue()
frontier.put(start)
came_from = {}
came_from[start] = None

while not frontier.empty():
 current = frontier.get()
 if current == goal:
 break
 for next in graph.neighbors(current):
 if next not in came_from:
 frontier.put(next)
 came_from[next] = current

path = []
while current != start:
 path.append(current)
 current = came_from[current]
path.append(start)
path.reverse()

Searching for a Path in a Graph: BFS

frontier = Queue()
frontier.put(start)
came_from = {}
came_from[start] = None

while not frontier.empty():
 current = frontier.get()
 if current == goal:
 break
 for next in graph.neighbors(current):
 if next not in came_from:
 frontier.put(next)
 came_from[next] = current

path = []
while current != start:
 path.append(current)
 current = came_from[current]
path.append(start)
path.reverse()

Searching for a Path in a Graph: Dijkstra

Searching for a Path in a Graph: Dijkstra

● Edges with different costs
○ Very slow roads (x10 worse)
○ Diagonal are more expensive
○ Going close to obstacles more risky

Searching for a Path in a Graph: Dijkstra
● Edges with different costs

○ Very slow roads (x10 worse)
○ Diagonal are more expensive
○ Going close to obstacles more risky

● Changes frontier exploration
○ Track costs with priority queue (return

low-cost first)
○ Add a path only if it is better than best

previous path
● Slightly more expensive than BFS

○ O(V+E) vs O(V+E*log(V))

Searching for a Path in a Graph: Dijkstra
frontier = PriorityQueue()
frontier.put(start, 0)
came_from = {}

came_from[start] = None

while not frontier.empty():
 current = frontier.get()
 if current == goal:
 break
 for next in graph.neighbors(current):

Low cost first

Searching for a Path in a Graph: Dijkstra
frontier = PriorityQueue()
frontier.put(start, 0)
came_from = {}
cost_so_far = {}
came_from[start] = None
cost_so_far[start] = 0

while not frontier.empty():
 current = frontier.get()
 if current == goal:
 break
 for next in graph.neighbors(current):
 new_cost = cost_so_far[current] + graph.cost(current, next)

Low cost first

Searching for a Path in a Graph: Dijkstra
frontier = PriorityQueue()
frontier.put(start, 0)
came_from = {}
cost_so_far = {}
came_from[start] = None
cost_so_far[start] = 0

while not frontier.empty():
 current = frontier.get()
 if current == goal:
 break
 for next in graph.neighbors(current):
 new_cost = cost_so_far[current] + graph.cost(current, next)
 if next not in cost_so_far or new_cost < cost_so_far[next]:
 cost_so_far[next] = new_cost
 priority = new_cost
 frontier.put(next, priority)
 came_from[next] = current

Low cost first

Add to frontier only if it is

better than best path to

next

Searching for a Path in a Graph: Dijkstra
frontier = PriorityQueue()
frontier.put(start, 0)
came_from = {}
cost_so_far = {}
came_from[start] = None
cost_so_far[start] = 0

while not frontier.empty():
 current = frontier.get()
 if current == goal:
 break
 for next in graph.neighbors(current):
 new_cost = cost_so_far[current] + graph.cost(current, next)
 if next not in cost_so_far or new_cost < cost_so_far[next]:
 cost_so_far[next] = new_cost
 priority = new_cost
 frontier.put(next, priority)
 came_from[next] = current

Searching for a Path in a Graph: Dijkstra
frontier = PriorityQueue()
frontier.put(start, 0)
came_from = {}
cost_so_far = {}
came_from[start] = None
cost_so_far[start] = 0

while not frontier.empty():
 current = frontier.get()
 if current == goal:
 break
 for next in graph.neighbors(current):
 new_cost = cost_so_far[current] + graph.cost(current, next)
 if next not in cost_so_far or new_cost < cost_so_far[next]:
 cost_so_far[next] = new_cost
 priority = new_cost
 frontier.put(next, priority)
 came_from[next] = current

Searching for a Path in a Graph: Dijkstra
frontier = PriorityQueue()
frontier.put(start, 0)
came_from = {}
cost_so_far = {}
came_from[start] = None
cost_so_far[start] = 0

while not frontier.empty():
 current = frontier.get()
 if current == goal:
 break
 for next in graph.neighbors(current):
 new_cost = cost_so_far[current] + graph.cost(current, next)
 if next not in cost_so_far or new_cost < cost_so_far[next]:
 cost_so_far[next] = new_cost
 priority = new_cost
 frontier.put(next, priority)
 came_from[next] = current

Searching for a Path in a Graph: Dijkstra
frontier = PriorityQueue()
frontier.put(start, 0)
came_from = {}
cost_so_far = {}
came_from[start] = None
cost_so_far[start] = 0

while not frontier.empty():
 current = frontier.get()
 if current == goal:
 break
 for next in graph.neighbors(current):
 new_cost = cost_so_far[current] + graph.cost(current, next)
 if next not in cost_so_far or new_cost < cost_so_far[next]:
 cost_so_far[next] = new_cost
 priority = new_cost
 frontier.put(next, priority)
 came_from[next] = current

Searching for a Path in a Graph: Dijkstra
frontier = PriorityQueue()
frontier.put(start, 0)
came_from = {}
cost_so_far = {}
came_from[start] = None
cost_so_far[start] = 0

while not frontier.empty():
 current = frontier.get()
 if current == goal:
 break
 for next in graph.neighbors(current):
 new_cost = cost_so_far[current] + graph.cost(current, next)
 if next not in cost_so_far or new_cost < cost_so_far[next]:
 cost_so_far[next] = new_cost
 priority = new_cost
 frontier.put(next, priority)
 came_from[next] = current

Dijkstra vs Breadth-First-Search

● Both find shortest path
● Dijkstra finds shortest path while accounting for different costs
● Both waste time exploring many directions that may not be worth it

Searching for a Path in a Graph: Heuristic Search (greedy)

● Targeted expansion towards goal
● Driven by heuristic function

○ Example: distance to goal

Searching for a Path in a Graph: Heuristic Search (greedy)

frontier = PriorityQueue()
frontier.put(start, 0)
came_from = {}
came_from[start] = None

while not frontier.empty():
 current = frontier.get()

 if current == goal:
 break

 for next in graph.neighbors(current):
 if next not in came_from:
 # drop cost computation
 priority = distance(goal, next)
 frontier.put(next, priority)
 came_from[next] = current

Searching for a Path in a Graph: Heuristic Search (greedy)

frontier = PriorityQueue()
frontier.put(start, 0)
came_from = {}
came_from[start] = None

while not frontier.empty():
 current = frontier.get()

 if current == goal:
 break

 for next in graph.neighbors(current):
 if next not in came_from
 # drop cost computation
 priority = distance(goal, next)
 frontier.put(next, priority)
 came_from[next] = current

Searching for a Path in a Graph: Heuristic Search (greedy)

frontier = PriorityQueue()
frontier.put(start, 0)
came_from = {}
came_from[start] = None

while not frontier.empty():
 current = frontier.get()

 if current == goal:
 break

 for next in graph.neighbors(current):
 if next not in came_from:
 # drop cost computation
 priority = distance(goal, next)
 frontier.put(next, priority)
 came_from[next] = current

● Effectiveness depends on heuristics
● There are No performance guarantees

Searching for a Path in a Graph: A*

Best of both worlds
● Distance from home (Dijkstra)
● Distance from goal (Greedy)

Searching for a Path in a Graph: A*
frontier = PriorityQueue()
frontier.put(start, 0)
came_from = {}
cost_so_far = {}
came_from[start] = None
cost_so_far[start] = 0

while not frontier.empty():
 current = frontier.get()

 if current == goal:
 break

 for next in graph.neighbors(current):
 new_cost = cost_so_far[current] + graph.cost(current, next)
 if next not in cost_so_far or new_cost < cost_so_far[next]:
 cost_so_far[next] = new_cost
 priority = new_cost + distance(goal, next)
 frontier.put(next, priority)
 came_from[next] = current

Recalculation of paths
● World changes, path may not longer be optimal or be plain obsolete

● When
○ Every n steps (space or time)

○ When world change is detected

○ When landmarks are identified

○ When lost

○ When possible (extra time, CPU)

● What to recalculate
○ Full path

○ Partial path (closest) by splicing and stitching

Key data structures in ROS for motion

Occupancy Grid

This represents a 2-D grid map
Each cell represents the probability of occupancy.

#MetaData for the map
MapMetaData info

The map data, in row-major order, starting with (0,0). Occupancy
probabilities are in the range [0,100]. Unknown is -1.
int8[] data

Key data structures in ROS for motion
Occupancy Grid for representing maps

This represents a 2-D grid map
Each cell represents the probability of occupancy.

#MetaData for the map
MapMetaData info

The map data, in row-major order, starting with (0,0). Occupancy
probabilities are in the range [0,100]. Unknown is -1.
int8[] data

The time at which the map was loaded
time map_load_time
The map resolution [m/cell]
float32 resolution
Map width [cells]
uint32 width
Map height [cells]
uint32 height
The origin of the map [m, m, rad].
This is the real-world pose of the cell (0,0) in the map.
geometry_msgs/Pose origin

Key data structures in ROS for motion
Occupancy Grid for representing maps

This represents a 2-D grid map
Each cell represents the probability of occupancy.

#MetaData for the map
MapMetaData info

The map data, in row-major order, starting with (0,0). Occupancy
probabilities are in the range [0,100]. Unknown is -1.
int8[] data

The time at which the map was loaded
time map_load_time
The map resolution [m/cell]
float32 resolution
Map width [cells]
uint32 width
Map height [cells]
uint32 height
The origin of the map [m, m, rad].
This is the real-world pose of the cell (0,0) in the map.
geometry_msgs/Pose origin

Key data structures in ROS for motion
Occupancy Grid for representing maps

This represents a 2-D grid map
Each cell represents the probability of occupancy.

#MetaData for the map
MapMetaData info

The map data, in row-major order, starting with (0,0). Occupancy
probabilities are in the range [0,100]. Unknown is -1.
int8[] data

The time at which the map was loaded
time map_load_time
The map resolution [m/cell]
float32 resolution
Map width [cells]
uint32 width
Map height [cells]
uint32 height
The origin of the map [m, m, rad].
This is the real-world pose of the cell (0,0) in the map.
geometry_msgs/Pose origin

3D? Look at Octomaps
https://wiki.ros.org/octomap

Key data structures in ROS for motion
Occupancy Grid for representing maps

http://www.ikaros-project.org/articles/2008/gridmaps/

Cells containing 0,100
Cells containing range of probabilities between 0,100

Key data structures in ROS for motion
Grid of cells -- same size cells, could be dispersed

#an array of cells in a 2D grid
float32 cell_width
float32 cell_height
geometry_msgs/Point[] cells

https://wiki.ros.org/octomap
http://www.ikaros-project.org/articles/2008/gridmaps/

Key data structures in ROS for motion
Grid of cells -- same size cells, could be dispersed

#an array of cells in a 2D grid
float32 cell_width
float32 cell_height
geometry_msgs/Point[] cells

This contains the position of a point in free space
float64 x
float64 y
float64 z

Key data structures in ROS for motion
Path as a sequence of poses (waypoints + orientation)

#An array of poses that represents a Path for a robot to follow
geometry_msgs/Pose[] poses

A representation of pose in free space, composed of position and orientation.
Point position
Vector: x,y,z, Rotation: w
Quaternion orientation

Take Away
● Families of approaches to employ in tandem

○ Reactive

■ Local area and fast response

○ Model-based

■ Big picture and long paths

■ Build and searching graphs

○ ROS Support

