
CS4501
Robotics for Soft Eng

Robotic Architectures and Machinery

Architectural elements
● Asynchronous, event-driven -- world operates that way
● Decoupled -- parallelization, reuse
● Abstraction -- manage complexity
● Close loop -- need to assess/respond to changes

Conceptual Architecture

Sense Compute Act

Machine
State

Physical State

Physical State
● Physical attributes that may change over time

● Some are sensed and some are estimated
● Robot State Examples

○ Roomba: senses odometry and velocity, estimates location

● World State Examples
○ Roomba: sense obstacles, estimates their location

Physical State
● Physical attributes that may change over time

● Some are sensed and some are estimated
● Robot State Examples

○ Roomba: senses odometry and velocity, estimates location

○ ?

● World State Examples
○ Roomba: sense obstacles, estimates their location

○ ?

Physical State
● Physical attributes that may change over time

● Some are sensed and some are estimated
● Robot State Examples

○ Roomba: senses odometry and velocity, estimates location

○ Arm: senses elbow, wrist, finger angles, estimates position

● World State Examples
○ Roomba: sense obstacles, estimates their location

○ Arm: senses object to pick-up, estimates object friction coefficient

Dominant Architectural Types: Hierarchical/Deliberative

Sense Plan Act

World

● Sequential execution
● Monolithic sensing
● Model-based deliberate control

Perception

Physical State

Machine State

Think
Think

o
d

o
m

eter

b
u

m
p

laser

Hierarchical/Deliberative my “Roomba”

Sensing Planning Acting

World

Physical Model

lw
h

eel

rw
h

eel

1. Senses world through multiple sensors
2. Perception updates interpretation of the world
3. Planning defines safe trajectory
4. Acting generates motor commands

Mission

Perception

Think

o
d

o
m

eter

b
u

m
p

laser

Hierarchical/Deliberative my “Roomba”

Sensing
Planning

Acting

World

Physical Model

lw
h

eel

rw
h

eel

Mission
Planner

N
avigato

r

Control

velocity

1. Senses world through multiple sensors
2. Perception updates interpretation of the world
3. Mission planner sets high-level objectives based

on mission
4. Loc/Map reads model to infer where we are

and builds/refines map
5. Navigator

○ Reads world to get map

○ Compute paths to meet objective
○ Tells planner when mission is complete or if

objectives need revision

6. Controller transforms waypoint in path into
motor commands

Mission

Perception

Lo
c -

M
ap

Think

o
d

o
m

eter

b
u

m
p

laser

Hierarchical/Deliberative my “Roomba”

Sensing
Planning

Acting

World

Physical Model

lw
h

eel

rw
h

eel

Mission
Planner

N
avigato

r

Control

velocity

1. Senses world through multiple sensors
2. Perception updates interpretation of the world
3. Mission planner sets high-level objectives based

on mission
4. Loc/Map reads model to infer where we are

and builds/refines map
5. Navigator

○ Reads world to get map

○ Compute paths to meet objective
○ Tells planner when mission is complete or if

objectives need revision

6. Controller transforms waypoint in path into
motor commands

Mission

Perception

Lo
c -

M
ap

What can go wrong? - 2 min

Think

o
d

o
m

eter

b
u

m
p

laser

Hierarchical/Deliberative my “Roomba”

Sensing
Planning

Acting

World

Physical Model

lw
h

eel

rw
h

eel

Mission
Planner

N
avigato

r

Control

velocity

Mission

Perception

Lo
c -

M
ap

● World is too complex to model
accurately / completely

● World changes faster than we can
plan for it

● Difficult to extend functionality due
to layers dependencies

Think

Dominant Architectural Types: Reactive

● Bio-inspired -- think insects
● No/Less reliance on model

Sense Plan Act

World

Perception

Physical World State

Machine State

Think

Dominant Architectural Types: Reactive

● Bio-inspired -- think insects
● No/Less reliance on model
● No thinking, more like intuitive

reactions

Sense Plan Act

World

Perception

Physical World State

Machine State

Dominant Architectural Types: Reactive

● Bio-inspired -- think insects
● No/Less reliance on model
● No thinking, more like intuitive

reactions
● Fast acting

Sense Act

World

Dominant Architectural Types: Reactive

● Bio-inspired -- think insects
● No/Less reliance on model
● No thinking, more like intuitive

reactions
● Fast acting
● Decomposition of behaviors

Sense Act

World

Behavior

Behavior

Dominant Architectural Types: Reactive

● Bio-inspired -- think insects
● No/Less reliance on model
● No thinking, more like intuitive

reactions
● Fast acting
● Decomposition of behaviors

Sense Act

Behavior

Sense Act

Sense Act

Behavior

Sense Act

Behavior

follow-left

Dominant Architectural Types: Reactive “Moth”

Light sensor 2

Light sensor 1 Sense Act

Wheel 2

Wheel 1

follow-right

Sense Act

follow-right

follow-left

Dominant Architectural Types: Reactive “Moth”

Light sensor 2

Light sensor 1 LS 1 TorqueWheel-2
= LS1 * k

Sense Act
Wheel 2

Wheel 1

follow-right

follow-left

Dominant Architectural Types: Reactive “Moth”

Light sensor 2

Light sensor 1 LS 1 TorqueWheel-2
= LS1 * k

LS 2 TorqueWheel-1
= LS2 * k

Wheel 2

Wheel 1

Behavior B

Behavior A

Dominant Architectural Types: Reactive

Light sensor 2

Light sensor 1 LS 1

LS 2
Wheel 2

Wheel 1

Change to “Cockroach” - 1 min

Behavior B

Behavior A

Dominant Architectural Types: Reactive “Cockroach”

Light sensor 2

Light sensor 1 LS 1 TorqueWheel-2 1
= LS1 * k

LS 2 TorqueWheel-1 2
= LS2 * k

Wheel 2

Wheel 1

Dominant Architectural Types: Reactive

● Bio-inspired -- think insects
● No/Less reliance on model
● No thinking, more like intuitive

reactions
● Fast acting
● Decomposition of behaviors

Sense Act

World

Behavior

Behavior

Sense Act

What can go wrong? - 2 min

Follow right

Follow left

Dominant Architectural Types: Reactive “Light Follower”

Light sensor 2

Light sensor 1 LS 1 TorqueWheel-2
= LS1 * k

LS 2 TorqueWheel-1
= LS2 * k

Behavior Obstacle

Bump ?

Wheel 2

Wheel 1

Bump Sensor

Follow right

Follow left

Dominant Architectural Types: Reactive “Light Follower”

Light sensor 2

Light sensor 1 LS 1 TorqueWheel-2
= LS1 * k

LS 2 TorqueWheel-1
= LS2 * k

Behavior Obstacle

Bump ?

Wheel 2

Wheel 1

Bump Sensor

Go home
? ?

Behavior

Dominant Architectural Types: Reactive

● Prioritizing behaviors and handling dependencies
● Achieving high level goals or complex behaviors

● Bio-inspired -- think insects
● No/Less reliance on model
● No thinking, more like intuitive

reactions
● Fast acting
● Decomposition of behaviors

Sense Act

World

Behavior

Sense Act

Dominant Architectural Types: Reactive

Sensors Follow Path

Avoid Obstacle

Forage

Arbiter
Highest Prio

Lower Prio

Handling dependencies with arbiters or additional logic

Dominant Architectural Types: Hybrid - 3 Tier

Reactive

Executive

Deliberative

● Deliberative
○ Long term planning
○ Uses world representation

● Executive
○ Glue
○ Maintains world representation
○ Translates directives into lower level commands

● Reactive
○ Low level behaviors
○ Connects sensors-actors

Sensors

Actuators

Mission

Dominant Architectural Types: Hybrid - 3 Tier Our Bot

Reactive

Executive

Deliberative

o
d

o
m

e
t
e
r

b
u

m
p

l
a
s
e
r

Mission

Obstacle Avoidance
Sense Turn 45

Emergency
BatteryLow Beep

Control
Model

Mission Planner

...

lwheel

rwheel

...

Dominant Architectural Types: Hybrid - Variations

Reactive

Executive

Deliberative
InterfaceS

en
si

ng

Dominant Architectural Types: Probabilistic

Reactive

Executive

Deliberative

S
en

si
ng

P
ro

b
P

er
ce

pt
io

n

Prob Control

Reality is a bit messier

https://docs.px4.io/master/en/concept/architecture.html

PX4 - Autopilot

Reality is a bit messier

https://github.com/ApolloAuto/apollo

Apollo self-driving stack

Reality is a bit messier

https://github.com/ApolloAuto/apollo

Apollo self-driving stack

Taking stock
● Deliberative

○ Think hard, act later

○ Lots of states

○ Maps of the robot environment

○ Look ahead

● Reactive
○ Do not think, react

○ Less/No world states. Less/No maps. No look ahead

○ Reactive + state: Behavior, look ahead only while acting

● Hybrid
○ Think and act independently.

○ States. Look ahead in parallel to acting.

○ Combines long and short time scales

States and Machines
● We will learn about state estimation later

● Now states and design
○ Robot’s behavior depends on State (of robot and world)

○ States provide a way to decouple behaviors

○ Same event leads to different behavior depending on state

What is State

http://www.youtube.com/watch?v=ezTayb76x9U&t=12

States and Machines
● Robot’s behavior depends on State (of robot and world)

● Discretized States provide a way to decouple behaviors

● Same event leads to different behavior depending on state

Base Station

States and Machines

Closer to code https://docs.px4.io/master/en/concept/flight_modes.html

Different modes (states), imply
different interpretation of commands

Conceptual
https://diydrones.com/profiles/blogs/px4-flight-mode-switching-navigation-state-machine

Finite State Machine
● Future state depend on stimulus and on its current state

● Defined by (Σ, S, s0, δ, F):
○ Σ is the final input alphabet

○ S is a finite, non-empty set of states (in robots it often includes clock as an input)

○ s0 is an initial state, an element of S

○ δ is the state-transition function: δ : S x Σ → S

○ F is the set of final states

● Often represented graphically
○ State are nodes

○ Transitions are labeled edges

Finite State Machine Warm Up
 FSMs over {0, 1, 2} :

S1 S2

2

2

0,1

0,1

S1

What strings does it recognize?

Finite State Machine Warm Up
 FSMs over {0, 1, 2} :

S1 S2

2

2

0,1

0,1

S1

What strings does it recognize? Strings with an even number of 2s

Finite State Machine Warm Up Tiny Homework
 FSMs over {0, 1, 2} :

S1 S2S0

S1

Complete to recognize digits mod 3 = 0

Finite State Machine Warm Up
 FSMs over {0, 1, 2} :

S1 S2

1

1

0

0

S0

S1

0

1

2
2

2

Complete to recognize digits mod 3 = 0

Finite State Machine: More than recognizing strings
● Defined by (Σ, S, s0, δ, F, O):

○ Σ is the final input alphabet

○ S is a finite, non-empty set of states (in robots it often includes clock as an input)

○ s0 is an initial state, an element of S

○ δ is the state-transition function: δ : S x Σ → S

○ F is the set of final states

○ O is the set of outputs (Moore/Mealy machines)

Finite State Machine: Parking Meter Example
● Σ (m, t) : inserting money, requesting ticket

● S (unpaid, paying)

● s0 (unpaid)

● δ: transition function: δ : S x Σ → S (see diagram below)

● F : empty, always running

● O (p) : print ticket

unpaid paying

m/ m/

t/p

t/

Finite State Machine: Parking Meter Example (with refunds)
● Σ (m, t, r) : inserting money, requesting ticket, request refund

● S (unpaid, paying)

● s0 (unpaid) : an initial state, an element of S.

● δ: transition function: δ : S x Σ → S

● F : empty, always running

● O (p/d) : print ticket, deliver refund

unpaid paying

m m

t/p

t/
Please Complete

Finite State Machine: Parking Meter Example (with refunds)
● Σ (m, t, r) : inserting money, requesting ticket, request refund

● S (unpaid, paying)

● s0 (unpaid) : an initial state, an element of S.

● δ: transition function: δ : S x Σ → S

● F : empty, always running

● O (p/d) : print ticket, deliver refund

unpaid paying

m m

t/p

t/

r/d

r/

Ultimate Finite State Machine: Quidditch
● Inputs: detect snitch, capture snitch, detect wall, detect opponent, …
● Final states: score, capture snitch

Ultimate Finite State Machine: HarryPotter

From J. McLurkin lectures

Rice University

FSM Implementation
● General requirements

○ Variable to track state

○ Mechanism to set state

○ Mechanism to update a state

○ State encodings

● Styles
○ Nested switch statements (lab)

○ Table-based

○ State-based pattern (next)

FSM are hard to reuse and do not scale well
● Reuse

○ Large impact of changes
■ Adding/removing states causes changes to at least all neighbors

○ High-coupling
■ Conditions for transitions are encoded within states

● Scaling
○ N states

○ N can be large

○ NxN potential transitions

Hierarchical FSMs
● Super states

● Generalized transitions

A

B

C

a

b

c

c

d

D

Hierarchical FSMs
● Super states

● Generalized transitions

A

B

C

a

b

c

c

d

A

B

C

a

b

c

d

Hierarchical FSMs
● Changes in Turn-r or Turn-l affect Straight

Turn-r

Straight

Turn-l

obstacle-left

obstacle-right

free

free

Avoidance

Hierarchical FSMs
● Changes in Turn-r or Turn-l affect Straight

● Avoidance module is now reusable!

Turn-r

Straight

Turn-l

obstacle-left

obstacle-right

free

free

Turn-r

Straight

Turn-l

obstacle-left

obstacle-right

free

obstacle-right

obstacle-left

Avoidance

Hierarchical FSMs
● Super states

● Generalized transitions

● Behavioral inheritance
○ Adding new internal states or transitions to

improve state performance

Turn-r

Straight

Turn-l

obstacle-left

obstacle-right

free

free

Turn-r

Straight

Turn-l

obstacle-left

obstacle-right

free

obstacle-right

obstacle-left

Oscillating

Avoidance

Hierarchical FSMs
● Super states

● Generalized transitions

● Behavioral inheritance
○ Adding new internal states or

transitions to improve state

performance

○ Adding new internal states or

transitions to tailor a super state to a

new domain! (drones)

Turn-r

Straight

Turn-l

obstacle-left

obstacle-right

free

free

Turn-r

Straight

Turn-l

obstacle-left

obstacle-right

free

obstacle-right

obstacle-left

Go up

Go
down

Takeaways
● FSM key machinery

○ To encode and track state

○ Helpful to interpret the physical world

○ Helpful to decouple behaviors

○ Extensions to support outputs and probabilities

○ Hierarchies to scale them up

