### How to be make the most out of this virtual class

#### • Zoom Setup

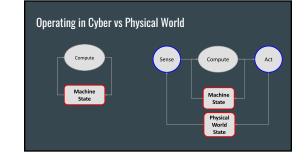
- See Presentation / Code
  See Speaker
- See Chat

#### How to be make the most out of this virtual class

- Comfortable and quiet space
  Comfortable and quiet space
  Join a couple of minutes early
  Maximize screen
  See Presentation / Code
  See Presentation / Code
  See Chat



# CS4501 Robotics for Soft Eng


# Is this Class for me? - Poll

- You are familiar with programming with threads

If your answer was YES to ALL questions then this class is for you

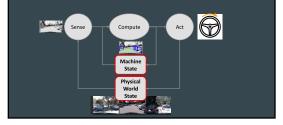
How do we build systems that can





# **Operating in Physical World - Exercise**




# Operating in Physical World - Exercise

- - Pincer's strength/grip
    Frames of reference (what is move left?)

# Operating in Physical World is Hard

- Model of world matters

# Operating in Physical World



# Sensing Physical World

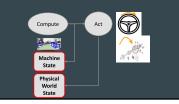
Physical world state is partially observable



# Sensing Physical World

- Physical world state is partially observable
- Sensors are noisy, inaccurate, and limited




# Sensing Physical World

- Physical world state is partially observab
- Sensors are noisy, inaccurate, and limited
- Inferring state from sensors' data is another approximation



# Actuating on Physical World

Actuators inaccuracies when electro-mechanic assumptions break



# Actuating on Physical World

- Actuators inaccuracies when electro-mechanic assumptions break
- Actuators inaccuracies when mismatch of physical and machine state



# **Compensation Strategies**

- More and more powerful sensors
- Better models of the robot and the world
- More and faster feedback loops
- Exposure to more scenarios

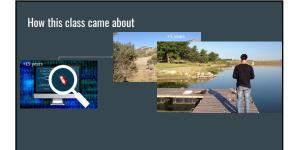




How do we build software engineer systems that car

hysically operate in the world?


# Software Engineer

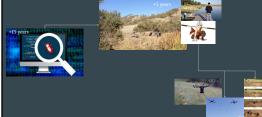

- Architectures and design patterns
- World representation in the machine
- Algorithms and data structure
- Simulation to bridge the testing gap with physical world
- Programming the deployment in the real work

# How this class came about
















# How this class came about





## Course Structure

- Lectures on Tuesdays
  - Zoom
  - Labs on Thur
- A Quinnes on several meterials
- 2 min Beheties Video (2 neints)
- Project for the last couple of weeks (20 point

### Lab Structure

- Be laptop-ready on Thursdays to complete labs
- Sign-up for Slack
- - "Life grading" during office hours or Lab time "Life" means we get to chat a bit more, dig a bit deeper, answer questions
- To get full grade: graded within a week of being assigned
  - To get 50%: within 2 weeks of being assigned
  - 0 otherwise

### **Course Materials Walkthrough**

- Website for all materials and labs
- Collab for announcements, grades, and recorded lectures

### Course Policies - Doing your own work

#### **Course Policies - Accommodations**

| entative Schedule |                                 |                                                         |
|-------------------|---------------------------------|---------------------------------------------------------|
| 1                 | Introduction                    | Lab-1: Set up and Basic ROS                             |
| 2                 | Architecture and Patterns       | Lab-2: Node communication and simulation environment    |
| 3                 | Software Machinery + Q1         | Lab-3: Domain types and libraries, parameter and launch |
| 4                 | Robot and world through sensors | Lab-4: Sensor filtering and fusion                      |
| 5                 | Perception + Q2                 | Lab-5: Perception of images                             |
| 6                 | UVA Break Day                   | Invited Speaker                                         |
| 8                 | Controlling your robot          | Lab-6: Controlling and testing your robot               |
| 9                 | Making plans + Q3               | Lab-7: Mapping and Motion Planning                      |
| 10                | Localization and navigation     | Lab-E: Ethics                                           |
| 11                | Transformations                 | Lab-8: Transformations                                  |
| 12                | Advanced Robotics + Q4          | UVA Break Day                                           |
| 13                | Project parameters              | Catch-up Lab and project questions                      |
| 14                | Project                         | Project                                                 |
| 15                | Project Presentations and Demos | Taking stock                                            |

### TODO by Thursday

- Sign up for Slack