CS4501 Robotics for Soft Eng

 $\bullet \bullet \bullet$

Robot Architectures and Machinery

Robot Systems Architectural Attributes

- Asynchronous, event-driven -- world operates that way
- Decoupled -- parallelization, reuse
- Abstraction -- manage complexity
- Close loop -- need to assess/respond to changes

Conceptual Architecture - Structural Design

Physical State

- Physical attributes that may change over time
- Some are sensed and some are estimated
- Robot State Examples
 - Roomba: senses odometry and velocity, estimates location
- World State Examples
 - Roomba: sense obstacles, estimates their location

- 1. Senses world through multiple sensors
- 2. Perception updates interpretation of the world
- 3. Planning defines safe trajectory
- 4. Acting generates motor commands

- 1. Senses world through multiple sensors
- 2. Perception updates interpretation of the world
- 3. Mission planner sets high-level objectives based on mission
- 4. Loc/Map reads model to infer where we are and builds/refines map
- 5. Navigator
 - Reads world to get map
 - Compute paths to meet objective
 - Tells planner when mission is complete or if objectives need revision
- 6. Controller transforms waypoint in path into motor commands

What can go wrong? - 2 min

- 1. Senses world through multiple sensors
- 2. Perception updates interpretation of the world
- 3. Mission planner sets high-level objectives based on mission
- 4. Loc/Map reads model to infer where we are and builds/refines map
- 5. Navigator
 - Reads world to get map
 - Compute paths to meet objective
 - Tells planner when mission is complete or if objectives need revision
- 6. Controller transforms waypoint in path into motor commands

- World is too complex to model accurately / completely
- World changes faster than we can plan
- Difficult to extend functionality due to layers dependencies

Bio-inspired -- think insectsNo/Less reliance on model

- Bio-inspired -- think insects
- No/Less reliance on model
- No thinking, more like intuitive reactions

- Bio-inspired -- think insects
- No/Less reliance on model
- No thinking, more like intuitive reactions
- Fast acting

- Bio-inspired -- think insects
- No/Less reliance on model
- No thinking, more like intuitive reactions
- Fast acting
- Decomposition of behaviors

- Bio-inspired -- think insects
- No/Less reliance on model
- No thinking, more like intuitive reactions
- Fast acting
- Decomposition of behaviors

Change to "Cockroach" - 1 min

Dominant Architectural Types: Reactive "Cockroach"

What can go wrong? - 2 min

- Bio-inspired -- think insects
- No/Less reliance on model
- No thinking, more like intuitive reactions
- Fast acting
- Decomposition of behaviors

Dominant Architectural Types: Reactive "Light Follower"

Dominant Architectural Types: Reactive "Light Follower"

- Bio-inspired -- think insects
- No/Less reliance on model
- No thinking, more like intuitive reactions
- Fast acting
- Decomposition of behaviors

Prioritizing behaviors and handling dependencies

• Achieving high level goals or complex behaviors

Handling dependencies with arbiters or additional logic

Reconsidering Architectures

- Modular Decomposition is key
 - \circ To develop and reuse
 - To test
 - To isolate failures
- Criteria
 - By features
 - Temporal

https://arxiv.org/pdf/1901.04407.pdf

Architectures: Temporal decomposition

- Time to sense
- Time to think
- Time to act

Architecture: Temporal decomposition

As slow as deliberative speeds

As fast as sensing speeds

Architecture: Temporal decomposition

As slow as deliberative speeds

Architecture: Temporal decomposition

Architectures: Temporal decomposition

IARA Software Architecture on Ford Escape

Architectures: Temporal decomposition

Dominant Architectural Types: Hybrid - 3 Tier

• Deliberative

- Long term planning
- Uses world representation
- Executive
 - Glue
 - Maintains world representation
 - Translates directives into lower level commands

• Reactive

- Low level behaviors
- Connects sensors-actors

Dominant Architectural Types: Hybrid - 3 Tier Our Bot

Dominant Architectural Types: Hybrid - Variations

Dominant Architectural Types: Probabilistic

Reality is a bit messier

PX4 - Autopilot

https://docs.px4.io/master/en/concept/architecture.html

Reality is a bit messier

Apollo self-driving stack

https://github.com/ApolloAuto/apollo

Reality is a bit messier

https://github.com/ApolloAuto/apollo

Taking stock

• Deliberative

- Think hard, act later
- Lots of states
- Maps of the robot environment
- Look ahead

• Reactive

- Do not think, react
- Less/No world states. Less/No maps. No look ahead
- Reactive + state: Behavior, look ahead only while acting

• Hybrid

- Think and act independently.
- States. Look ahead in parallel to acting.
- Combines long and short time scales