
CS4501
Robotics for Soft Eng

Robot Architectures and Machinery



Robot Systems Architectural Attributes
● Asynchronous, event-driven -- world operates that way
● Decoupled -- parallelization, reuse
● Abstraction -- manage complexity
● Close loop -- need to assess/respond to changes



Conceptual Architecture - Structural Design

Sense Compute Act

Machine
State 

Physical State



Physical State
● Physical attributes that may change over time

● Some are sensed and some are estimated
● Robot State Examples

○ Roomba: senses odometry and velocity, estimates location

● World State Examples
○ Roomba: sense obstacles, estimates their location



Think   

o
d

o
m

eter

b
u

m
p

laser

Hierarchical/Deliberative my “Roomba”

Sensing Planning Acting

World

Physical Model 

lw
h

eel

rw
h

eel

1. Senses world through multiple sensors
2. Perception updates interpretation of the world
3. Planning defines safe trajectory
4. Acting generates motor commands

Mission

Perception



Think   

o
d

o
m

eter

b
u

m
p

laser

Hierarchical/Deliberative my “Roomba”

Sensing
Planning

Acting

World

Physical Model 

lw
h

eel

rw
h

eel

Mission 
Planner

N
avigato

r

Control

velocity

1. Senses world through multiple sensors
2. Perception updates interpretation of the world
3. Mission planner sets high-level objectives based 

on mission
4. Loc/Map reads model to infer where we are 

and builds/refines map
5. Navigator 

○ Reads world to get map

○ Compute paths to meet objective
○ Tells planner when mission is complete or if 

objectives need revision

6. Controller transforms waypoint in path into 
motor commands

Mission

Perception

Lo
c - 

M
ap



Think   

o
d

o
m

eter

b
u

m
p

laser

Hierarchical/Deliberative my “Roomba”

Sensing
Planning

Acting

World

Physical Model 

lw
h

eel

rw
h

eel

Mission 
Planner

N
avigato

r

Control

velocity

1. Senses world through multiple sensors
2. Perception updates interpretation of the world
3. Mission planner sets high-level objectives based 

on mission
4. Loc/Map reads model to infer where we are 

and builds/refines map
5. Navigator 

○ Reads world to get map

○ Compute paths to meet objective
○ Tells planner when mission is complete or if 

objectives need revision

6. Controller transforms waypoint in path into 
motor commands

Mission

Perception

Lo
c - 

M
ap

What can go wrong? - 2 min



Think   

o
d

o
m

eter

b
u

m
p

laser

Hierarchical/Deliberative my “Roomba”

Sensing
Planning

Acting

World

Physical Model 

lw
h

eel

rw
h

eel

Mission 
Planner

N
avigato

r

Control

velocity

Mission

Perception

Lo
c - 

M
ap

● World is too complex to model 
accurately / completely

● World changes faster than we can plan 

● Difficult to extend functionality due to 
layers dependencies



Think

Dominant Architectural Types: Reactive

● Bio-inspired -- think insects
● No/Less reliance on model

Sense Plan Act

World

Perception

Physical World State

Machine State



Think

Dominant Architectural Types: Reactive

● Bio-inspired -- think insects
● No/Less reliance on model
● No thinking, more like intuitive 

reactions

Sense Plan Act

World

Perception

Physical World State

Machine State



Dominant Architectural Types: Reactive

● Bio-inspired -- think insects
● No/Less reliance on model
● No thinking, more like intuitive 

reactions
● Fast acting

Sense Act

World



Dominant Architectural Types: Reactive

● Bio-inspired -- think insects
● No/Less reliance on model
● No thinking, more like intuitive 

reactions
● Fast acting
● Decomposition of behaviors

Sense Act

World

Behavior



Behavior

Dominant Architectural Types: Reactive

● Bio-inspired -- think insects
● No/Less reliance on  model
● No thinking, more like intuitive 

reactions
● Fast acting
● Decomposition of behaviors

Sense Act

Behavior

Sense Act

Sense Act

Behavior

Sense Act

Behavior



follow-left

Dominant Architectural Types: Reactive “Moth” 

Light sensor 2

Light sensor 1 Sense Act

Wheel 2

Wheel 1

follow-right

Sense Act



follow-right

follow-left

Dominant Architectural Types: Reactive “Moth” 

Light sensor 2

Light sensor 1 LS 1 TorqueWheel-2 
= LS1 * k

Sense Act
Wheel 2

Wheel 1



follow-right

follow-left

Dominant Architectural Types: Reactive “Moth” 

Light sensor 2

Light sensor 1 LS 1 TorqueWheel-2 
= LS1 * k

LS 2 TorqueWheel-1 
= LS2 * k

Wheel 2

Wheel 1



Behavior B

Behavior A

Dominant Architectural Types:  Reactive  

Light sensor 2

Light sensor 1 LS 1

LS 2
Wheel 2

Wheel 1

Change to “Cockroach” - 1 min 



Behavior B

Behavior A

Dominant Architectural Types:  Reactive   “Cockroach” 

Light sensor 2

Light sensor 1 LS 1 TorqueWheel-2 1 
= LS1 * k

LS 2 TorqueWheel-1 2 
= LS2 * k

Wheel 2

Wheel 1



Dominant Architectural Types: Reactive

● Bio-inspired -- think insects
● No/Less reliance on model
● No thinking, more like intuitive 

reactions
● Fast acting
● Decomposition of behaviors

Sense Act

World

Behavior

Behavior

Sense Act

What can go wrong? - 2 min



Follow right

Follow  left

Dominant Architectural Types: Reactive “Light Follower” 

Light sensor 2

Light sensor 1 LS 1 TorqueWheel-2 
= LS1 * k

LS 2 TorqueWheel-1 
= LS2 * k

Behavior Obstacle

Bump ?

Wheel 2

Wheel 1

Bump Sensor



Follow right

Follow left

Dominant Architectural Types: Reactive “Light Follower” 

Light sensor 2

Light sensor 1 LS 1 TorqueWheel-2 
= LS1 * k

LS 2 TorqueWheel-1 
= LS2 * k

Behavior Obstacle

Bump ?

Wheel 2

Wheel 1

Bump Sensor

Go home
? ?



Behavior

Dominant Architectural Types: Reactive

● Prioritizing behaviors and handling dependencies
● Achieving high level goals or complex behaviors

● Bio-inspired -- think insects
● No/Less reliance on model
● No thinking, more like intuitive 

reactions
● Fast acting
● Decomposition of behaviors

Sense Act

World

Behavior

Sense Act



Dominant Architectural Types: Reactive  

Sensors Follow Path

Avoid Obstacle

Forage

Arbiter
Highest Prio

Lower Prio

Handling dependencies with arbiters or additional logic



Reconsidering Architectures  
● Modular Decomposition is key

○ To develop and reuse

○ To test

○ To isolate failures

● Criteria
○ By features

○ Temporal 

https://arxiv.org/pdf/1901.04407.pdf

https://arxiv.org/pdf/1901.04407.pdf


Architectures: Temporal decomposition

● Time to sense
● Time to think
● Time to act

Sense Think Act

Physical 
World

f
a
s
t

m
e
d
i
u
m

s
l
o
w

f
a
s
t

s
l
o
w

m
e
d
i
u
m

f
a
s
t

m
e
d
i
u
m

f
a
s
t

s
l
o
w



Architecture: Temporal decomposition

Long

Immediate

...

...

As fast as sensing speeds

As slow as deliberative speeds

Medium



Architecture: Temporal decomposition

High-level planning

Low-level motor control

...

...

Tactical planning

As fast as sensing speeds

As slow as deliberative speeds



Architecture: Temporal decomposition

Waypoint planner
(accepts start and goal locations)

PID Control 
(for wheels torque)

Obstacle avoidance
(range sensor)

Emergency stop
(based on bump sensor)

1hz

50hz

20hz

10hz

Next waypoint

Adjust velocity

Stop all engines



Architectures: Temporal decomposition

Waypoint planner
(accepts start and goal locations)

PID Control 
(for wheels torque)

Obstacle avoidance
(range sensor)

Emergency stop
(based on bump sensor)

1hz

50hz

20hz

10hz

Next waypoint

Adjust velocity

Stop all engines

IARA Software Architecture on Ford Escape

Waypoint planner
(accepts start and goal locations)

PID Control 
(for wheels torque)

Obstacle avoidance
(range sensor)

Emergency stop
(based on bump sensor)

1hz

50hz

20hz

10hz

Next waypoint

Adjust velocity

Stop all engines



Architectures: Temporal decomposition

Waypoint planner
(accepts start and goal locations)

PID Control 
(for wheels torque)

Obstacle avoidance
(range sensor)

Emergency stop
(based on bump sensor)

1hz

50hz

20hz

●
M

odel for context 
●

S
patial locality

●
M

em
ory &

 lookahead 
●

S
ensor speed

10hz

Next waypoint

Adjust velocity

Stop all engines

Decomposition
Criteria

Waypoint planner
(accepts start and goal locations)

PID Control 
(for wheels torque)

Obstacle avoidance
(range sensor)

Emergency stop
(based on bump sensor)

1hz

50hz

20hz

10hz

Next waypoint

Adjust velocity

Stop all engines



Dominant Architectural Types:  Hybrid - 3 Tier

Reactive

Executive

Deliberative

● Deliberative
○ Long term planning
○ Uses world representation

● Executive
○ Glue 
○ Maintains world representation
○ Translates directives into lower level commands

● Reactive
○ Low level behaviors
○ Connects sensors-actors

Sensors

Actuators

Mission



Dominant Architectural Types:  Hybrid - 3 Tier Our Bot

Reactive

Executive

Deliberative

odom
eter

bum
p

laser

Mission

Obstacle Avoidance
Sense Turn 45

Emergency
BatteryLow Beep

Control
Model 

Mission Planner

...

lwheel

rwheel

...



Dominant Architectural Types:  Hybrid - Variations

Reactive

Executive

Deliberative

InterfaceS
en

si
ng



Dominant Architectural Types:  Probabilistic

Reactive

Executive

Deliberative

S
en

si
ng

P
ro

b 
P

er
ce

pt
io

n

Prob Control



Reality is a bit messier

https://docs.px4.io/master/en/concept/architecture.html

PX4 - Autopilot



Reality is a bit messier

https://github.com/ApolloAuto/apollo

Apollo self-driving stack



Reality is a bit messier

https://github.com/ApolloAuto/apollo

Apollo self-driving stack



Taking stock
● Deliberative 

○ Think hard, act later

○ Lots of states

○ Maps of the robot environment

○ Look ahead 

● Reactive 
○ Do not think, react

○ Less/No world states. Less/No maps. No look ahead

○ Reactive + state: Behavior, look ahead only while acting

● Hybrid 
○ Think and act independently. 

○ States. Look ahead in parallel to acting. 

○ Combines long and short time scales


