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Robot Systems Architectural Attributes
● Asynchronous, event-driven -- world operates that way
● Decoupled -- parallelization, reuse
● Abstraction -- manage complexity
● Close loop -- need to assess/respond to changes



Conceptual Architecture - Structural Design
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Physical State
● Physical attributes that may change over time

● Some are sensed and some are estimated
● Robot State Examples

○ Roomba: senses odometry and velocity, estimates location

● World State Examples
○ Roomba: sense obstacles, estimates their location
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1. Senses world through multiple sensors
2. Perception updates interpretation of the world
3. Planning defines safe trajectory
4. Acting generates motor commands
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1. Senses world through multiple sensors
2. Perception updates interpretation of the world
3. Mission planner sets high-level objectives based 

on mission
4. Loc/Map reads model to infer where we are 

and builds/refines map
5. Navigator 

○ Reads world to get map

○ Compute paths to meet objective
○ Tells planner when mission is complete or if 

objectives need revision

6. Controller transforms waypoint in path into 
motor commands
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What can go wrong? - 2 min
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● World is too complex to model 
accurately / completely

● World changes faster than we can plan 

● Difficult to extend functionality due to 
layers dependencies
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● No/Less reliance on model
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Behavior

Dominant Architectural Types: Reactive

● Bio-inspired -- think insects
● No/Less reliance on  model
● No thinking, more like intuitive 

reactions
● Fast acting
● Decomposition of behaviors
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Dominant Architectural Types: Reactive “Moth” 

Light sensor 2
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Dominant Architectural Types: Reactive “Moth” 

Light sensor 2

Light sensor 1 LS 1 TorqueWheel-2 
= LS1 * k
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Behavior B

Behavior A

Dominant Architectural Types:  Reactive  

Light sensor 2

Light sensor 1 LS 1

LS 2
Wheel 2

Wheel 1

Change to “Cockroach” - 1 min 



Behavior B

Behavior A

Dominant Architectural Types:  Reactive   “Cockroach” 

Light sensor 2

Light sensor 1 LS 1 TorqueWheel-2 1 
= LS1 * k

LS 2 TorqueWheel-1 2 
= LS2 * k

Wheel 2

Wheel 1



Dominant Architectural Types: Reactive
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Dominant Architectural Types: Reactive “Light Follower” 
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Dominant Architectural Types: Reactive “Light Follower” 

Light sensor 2
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Behavior

Dominant Architectural Types: Reactive

● Prioritizing behaviors and handling dependencies
● Achieving high level goals or complex behaviors

● Bio-inspired -- think insects
● No/Less reliance on model
● No thinking, more like intuitive 

reactions
● Fast acting
● Decomposition of behaviors
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Dominant Architectural Types: Reactive  

Sensors Follow Path

Avoid Obstacle

Forage

Arbiter
Highest Prio

Lower Prio

Handling dependencies with arbiters or additional logic



Reconsidering Architectures  
● Modular Decomposition is key

○ To develop and reuse

○ To test

○ To isolate failures

● Criteria
○ By features

○ Temporal 

https://arxiv.org/pdf/1901.04407.pdf

https://arxiv.org/pdf/1901.04407.pdf


Architectures: Temporal decomposition

● Time to sense
● Time to think
● Time to act
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Architecture: Temporal decomposition
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Architecture: Temporal decomposition

High-level planning

Low-level motor control

...

...

Tactical planning

As fast as sensing speeds

As slow as deliberative speeds



Architecture: Temporal decomposition

Waypoint planner
(accepts start and goal locations)

PID Control 
(for wheels torque)

Obstacle avoidance
(range sensor)

Emergency stop
(based on bump sensor)
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Next waypoint

Adjust velocity

Stop all engines
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Architectures: Temporal decomposition
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Dominant Architectural Types:  Hybrid - 3 Tier

Reactive

Executive

Deliberative

● Deliberative
○ Long term planning
○ Uses world representation

● Executive
○ Glue 
○ Maintains world representation
○ Translates directives into lower level commands

● Reactive
○ Low level behaviors
○ Connects sensors-actors

Sensors

Actuators

Mission



Dominant Architectural Types:  Hybrid - 3 Tier Our Bot
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Dominant Architectural Types:  Hybrid - Variations
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Dominant Architectural Types:  Probabilistic
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Reality is a bit messier

https://docs.px4.io/master/en/concept/architecture.html

PX4 - Autopilot



Reality is a bit messier

https://github.com/ApolloAuto/apollo

Apollo self-driving stack



Reality is a bit messier

https://github.com/ApolloAuto/apollo
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Taking stock
● Deliberative 

○ Think hard, act later

○ Lots of states

○ Maps of the robot environment

○ Look ahead 

● Reactive 
○ Do not think, react

○ Less/No world states. Less/No maps. No look ahead

○ Reactive + state: Behavior, look ahead only while acting

● Hybrid 
○ Think and act independently. 

○ States. Look ahead in parallel to acting. 

○ Combines long and short time scales


