
CS4501
Robotics for Soft Eng

Sensors and Noise Management

Sense Think Act

Physical
World

Sensor
● Transduces energy into measure

● Measures a physical quantity (light, force, speed, …)

● Provides window into the world and robot

Sensor

● BMI088: 3 axis accelerometer / gyroscope ()
● BMP388: high precision pressure sensor
● VL53L1x ToF sensor to measure distance up to 4 meters
● PMW3901 optical flow sensor

● Transduces energy

● Measures a physical quantity (light, force, speed, …)

● Provides window into the world and oneself

https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmi088-ds001.pdf

Sensor

● BMI088: 3 axis accelerometer / gyroscope ()
● BMP388: high precision pressure sensor
● VL53L1x ToF sensor to measure distance up to 4 meters
● PMW3901 optical flow sensor

● Transduces energy

● Measures a physical quantity (light, force, speed, …)

● Provides window into the world and oneself

https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmi088-ds001.pdf

Sensors in ROS
● Component support for

○ Range finders

○ Cameras

○ Audio

○ Force

○ Pose

○ Power

○ …

● Sensor messages

● Sensor messages
○ Example for images

http://wiki.ros.org/Sensors
http://wiki.ros.org/sensor_msgs
http://wiki.ros.org/sensor_msgs

Sensor Classification
● Proprioceptive (internal state) - sense of itself

○ Measures values internally to the system

○ Battery level, wheel position, gyro

● Exteroceptive (external state) - sense the world
○ Observations of environment

○ Compass, cameras, lidars

Sensor Classification
● Proprioceptive (internal state)

○ Measures values internally to the system

○ Battery level, wheel position, gyro

● Exteroceptive (external state)
○ Observations of environment

○ Compass, cameras, lidars

● Active (emits energy)
○ Optical encoder

○ Radar

● Passive (passively receives energy)
○ Camera

○ Bump

Sensor Classification
● Proprioceptive (internal state)

○ Measures values internally to the system

○ Battery level, wheel position, gyro

● Exteroceptive (external state)
○ Observations of environment

○ Compass

● Active (emits energy)
○ Optical encoder

○ Radar

● Passive (passively receives energy)
○ Camera

○ Bump

Question: Examples of inter, external, active, passive in your body?

Sensor Classification
● Proprioceptive (internal state)

○ Measures values internally to the system

○ Battery level, wheel position, gyro

● Exteroceptive (external state)
○ Observations of environment

○ Compass

● Active (emits energy)
○ Optical encoder

○ Radar

● Passive (passively receives energy)
○ Camera

○ Bump

Question: how the Crazyflie senses?

● BMI088: 3 axis accelerometer / gyroscope (): Pr/Pa
● BMP388: high precision pressure sensor: E/Pa
● VL53L1x ToF sensor to measure distance up to 4 meters: E/Ac
● PMW3901 optical flow sensor: E/Pa

https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmi088-ds001.pdf
https://www.st.com/content/ccc/resource/technical/document/datasheet/group3/7d/85/c8/95/fb/3b/4e/2d/DM00452094/files/DM00452094.pdf/jcr:content/translations/en.DM00452094.pdf

Sensor Classification
● Proprioceptive (internal state)

○ Measures values internally to the system

○ Battery level, wheel position, gyro

● Exteroceptive (external state)

○ Observations of environment

○ Compass

● Active (emits energy)

○ Optical encoder

○ Radar

● Passive (passively receives energy)

○ Camera

○ Bump

Question: how the Crazyflie sensors?
● BMI088: 3 axis accelerometer / gyroscope (): Pr/Pa

● BMP388: high precision pressure sensor: E/Pa

● VL53L1x ToF sensor to measure distance up to 4 meters: E/Ac

● PMW3901 optical flow sensor: E/Pa

https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmi088-ds001.pdf
https://www.st.com/content/ccc/resource/technical/document/datasheet/group3/7d/85/c8/95/fb/3b/4e/2d/DM00452094/files/DM00452094.pdf/jcr:content/translations/en.DM00452094.pdf

T = 0

Sonar, ultrasonic, range scanners:

1. Pulse of energy is emitted from some source

Sonar, ultrasonic, range scanners:

1. Pulse of sound is emitted from some source
2. Wave after bounces off any obstacles

T = n

Sonar, ultrasonic, range scanners:

1. Pulse of sound is emitted from some source
2. Wave after bounces off any obstacles
3. Echo is received by one or multiple receptors

MODEL
d = ½ * v * t
t is measured
v is known cnst

Sonar, ultrasonic, range scanners:

1. Pulse of sound is emitted from some source
2. Wave after bounces off any obstacles
3. Echo is received by one or multiple receptors
4. Signal is interpreted in various ways to obtain

information about an obstacle

Let’s say this is ultrasonic sensor:
- v= 344 m/s
- If t=0.05 s then d= 8.6m

MODEL
d = ½ * v * t
t is measured
v is known cnst

Sonar, ultrasonic, range scanners:

1. Pulse of sound is emitted from some source
2. Wave after bounces off any obstacles
3. Echo is received by one or multiple receptors
4. Signal is interpreted in various ways to obtain

information about an obstacle

Let’s say this is ultrasonic sensor:
- v= 344 m/s
- If t=0.05 s then d= 8.6m

Assumptions - leaky abstractions
- v= 344 m/s with dry air, 21 C, sea level
- Surfaces are …

Sensor Noise - Modified Signal

● Single reading

Sensor Noise - Modified Signal

● Single reading
● Belongs belong to a distribution

Sensor Noise - Modified Signal

● Single reading
● Belong belong to a distribution
● Outliers

Sensor Noise - Modified Signal

● Single reading
● Belong belong to a distribution
● Outliers
● Shifts

Managing Sensor Noise
● Calibration

● Filtering

● Fusing

Calibration
● Shifts in distribution due to environmental assumptions

● Adjusting sensor for more accurate physical measurements within context

● Process
a. Conduct standardized tests

b. Recompute constants and error estimates

c. Redefine model parameters

Calibration Problem

MODEL
d = ½ * v * t
t is measured
v is known cnst

Let’s say this is ultrasonic sensor:
- v= 344 m/s
- If t=0.05 seconds, then d= 8.6m

Assumptions
- v= 344 m/s with dry air, 21 C, sea level
- Surfaces are …
- When assumptions break, measures are off!

Calibration Problem

MODEL
d = ½ * v * t
t is measured
v is known cnst

Let’s say this is ultrasonic sensor:
- v= 344 m/s
- If t=0.05 seconds, then d= 8.6m

Assumptions
- v= 344 m/s with dry air, 21 C, sea level -4.8
- Surfaces are …
- When assumptions break, measures are off!

ALTITUDE TEMPERATURE SPEED OF SOUND

Meter (m) Celcius (°C) m/s

0 (sea level) 21 344

3048 (10k ft) -4.8 328

6096 (20k ft) -24.6 316

9144 (30k ft) -44.4 303

Calibration Problem

MODEL
d = ½ * v * t
t is measured
v is known cnst

Let’s say this is ultrasonic sensor:
- v= 344 m/s 328
- If t=0.05 seconds, then d = 8.6m 8.2m

Assumptions
- v= 344 m/s with dry air, 21 C, sea level -4.8
- Surfaces are …
- When assumptions break, measures are off!

ALTITUDE TEMPERATURE SPEED OF SOUND

Meter (m) Celcius (°C) m/s

0 (sea level) 21 344

3048 (10k ft) -4.8 328

6096 (20k ft) -24.6 316

9144 (30k ft) -44.4 303

Calibration

MODEL
d = ½ * v * t
t is measured
v is unknown cnst

So let’s fix d to find v

Test 1: d = d1, v = d1 * 2 / t1
Test 2: d = d2, v = d2 * 2 / t2
...
Test n: d = dn, v = dn * 2 / tn

d1
d2

d3

Test 1 Test 2 Test n

Calibration

MODEL
d = ½ * v * t
t is measured
v’ is known contextualized cnst

d1
d2

d3

distance

time

v= 344 298m/s

New v

Original v

Test 1 Test 2 Test n

v= 299m/s

v= 301m/s

Calibration

MODEL
d = ½ * v * t
t is measured
v’ is known contextualized cnst
Let’s say this is ultrasonic sensor:

- v = 300 m/s
- If t=0.05 seconds, d= 8.6m 7.5m

d1
d2

d3

distance

time

Test 1 Test 2 Test n

Filtering Problem

● Signal gets distorted

● Interference causes lost reading

● Sensor pose shifts

Filtering Problem

● Signal gets distorted

● Interference causes lost reading

● Sensor pose shifts

Basic Filters from Signal Processing
• Low-pass filters
• High-pass filters
• Band filters

Filtering as smoothing
● Moving averages

Yt = (Xt + Xt-1 + Xt-2 + … + Xt-window) / windowSize

Filtering as smoothing
● Moving averages

Yt = (Xt + Xt-1 + Xt-2 + … + Xt-window) / windowSize

… 64 65 64 78 65 66 67 64 …

windowSize = 3

64

Filtering as smoothing
● Moving averages

Yt = (Xt + Xt-1 + Xt-2 + … + Xt-window) / windowSize

… 64 65 64 78 65 66 67 64 …

windowSize = 3

64 69

Filtering as smoothing
● Moving averages

Yt = (Xt + Xt-1 + Xt-2 + … + Xt-window) / windowSize

… 64 65 64 78 65 66 67 64 …

windowSize = 3

64 69 69

Filtering as smoothing
● Moving averages

Yt = (Xt + Xt-1 + Xt-2 + … + Xt-window) / windowSize

… 64 65 64 78 65 66 67 64 …

windowSize = 3

64 69 69 70

Filtering as smoothing
● Moving averages

Yt = (Xt + Xt-1 + Xt-2 + … + Xt-window) / windowSize

… 64 65 64 78 65 66 67 64 …

windowSize = 5

67

Larger windows stronger smoothing

Filtering as smoothing
● Moving averages

Yt = (Xt + Xt-1 + Xt-2 + … + Xt-window) / windowSize

● Generalized with weights for decaying

Yt = α Xt + α1 Xt-1 + α2 Xt-2 + α3 Xt-3 + … where α+α1+α2+α… = 1

w
e
i
g
h

t
s

Data age

Filtering as smoothing
● Moving averages

Yt = (Xt + Xt-1 + Xt-2 + … + Xt-window) / windowSize

● Generalized with weights for decaying

Yt = α Xt + α1 Xt-1 + α2 Xt-2 + α3 Xt-3 + … where α+α1+α2+α… = 1

● Generalized with exponential weights for decaying

Yt = α [Xt + (1 – α) Xt-1 + (1 - α)*2 Xt-2 + (1 - α)*3 Xt-3 + …] w
e
i
g
h

t
s

w
e
i
g
h

t
s

Data age

Data age

Filtering as smoothing

● Generalized with exponential weights for decaying

Yt = α Xt + (1 – α) Xt-1 + (1 - α)*2 Xt-2 + (1 - α)*3 Xt-3 + …
Or efficiently approximated
Yt = Yt-1 + α (Xt - Yt-1)

● Selection of α is crucial
○ α closer to 0: closer to last value
○ α closer to 1: no filtering

What if our sensor is still really noise?
Add sensors with complementary attributes and fuse them

FUSE Altitude

What if our sensor is still really noise?

FUSE Altitude

What if our sensor is still really noise?
P

S

True altitude

Estimated altitude

What if our sensor is still really noise?
P

S

True altitude

R
an

ge o
f erro

r

What if our sensor is still really noise?

FUSE Altitude

P
S

G
P

S

True altitude

What if our sensor is still really noise?

FUSE Altitude

P
S

G
P

S

True altitude

Estimated altitude

Average

What if our sensor is still really noise?

FUSE Altitude

P
S

G
P

S

True altitude
feasible

More information in ranges

What if our sensor is still really noise?

FUSE Altitude

P
S

G
P

S

True altitude

Estimated altitude

Average

feasible

Estimated altitude avg

What if our sensor is still really noise?

FUSE Altitude

Average

P
S

G
P

S

True altitude

What if overlapping range was tighter?

Estimated altitude avg

What if our sensor is still really noise?

FUSE Altitude

Average

P
S

G
P

S

True altitude

What if overlapping range was tighter?
● Within range, identify closest to average

What if our sensor is still really noise?

FUSE Altitude

Weighted Average

Let’s favor GPS… but what if flying indoors?

What if overlapping range was tighter?
● Within range, identify closest to average
● Use different fusing function

What if our sensor is still really noise?

FUSE Altitude

Multiple sensors are better than one.
Need to learn how to combine them
to leverage all information

What if our sensors are still noise?

FUSE Altitude

Complex Filters

G
P

S

A

l
t
i
t
u

d
e

What is the drone doing?

100

50

0

G
P

S

A

l
t
i
t
u

d
e

It is not going down
It does not seem to be hovering
It seems to be going up…

100

50

0

nope

likely

G
P

S

A

l
t
i
t
u

d
e

 Going up by how much?

100

50

0

A
l
t
i
t
u

d
e

100

50

0

If I had another sensor with a model…

Velocity in Z = 5 m/s
Altitude = Velocity in Z * t

10s5s

A
l
t
i
t
u

d
e

100

50

0

If I had another sensor with a model… but is not perfect either

Velocity in Z = 5 m/s ± 1

10s5s

A
l
t
i
t
u

d
e

100

50

0

10s5s

Last estimate x
t-1

Predict x
t

Based on model

A
l
t
i
t
u

d
e

100

50

0

10s5s

Last estimate x
t-1

Predict x
t

Measure z
t

Based on model

A
l
t
i
t
u

d
e

100

50

0

10s5s

Last estimate x
t-1

Predict x
t

Measure z
t

Prediction and Measurement
do not match

A
l
t
i
t
u

d
e

100

50

0

Blend

10s5s

Last estimate x
t-1

Predict x
t

Measure z
t

A
l
t
i
t
u

d
e

100

50

0

Blend prediction and measurement -- update

10s5s

Last estimate x
t-1

Predict x
t

Measure z
t

Residual

A
l
t
i
t
u

d
e

100

50

0

Estimate = α (measurement, prediction)

10s5s

Last estimate x
t-1

Predict x
t

Measure z
t

New estimate x
t

α

A
l
t
i
t
u

d
e

100

50

0

Estimate = α (measurement, prediction)

10s5s

Predict x
t-1

Measure z
t-1

Last estimate x
t-1

A
l
t
i
t
u

d
e

100

50

0

Estimate = α (measurement, prediction)

10s5s

Predict x
t-1

Measure z
t-1

Last estimate x
t-1

Predict x
t

PredictModel
Estimate

Update

Estimate

Sensor A
Measurement

Estimate = α (measurement, prediction)

Prediction

Algorithm
time_step = 1.0 # sec
scale_factor = 4.0/10

def predict_alt(estimated_alt, gain_rate):

 for z in sys.stdin:
 # predict
 predicted_alt = estimated_alt + gain_rate * time_step

 # update
 residual = z - predicted_alt
 estimated_alt = predicted_alt + scale_factor * residual

 return

assume velocity of 5 m/s and initial altitude of 50m
predict_alt(50, 5)

First try
#Assume wrong model
gain_rate: 20 m/s (instead of 5)
initial altitude of 50m

time_step = 1.0
scale_factor = 4.0/10

prediction = estimated_alt +
gain_rate * time_step
residual = z - predicted_alt
estimated_alt = predicted_alt +
scale_factor * residual

@t1

● Estimate between

measure and

prediction

● Bad model hurts

Correct Model
Velocity in Z = 5 m/s
Altitude = Velocity in Z * t

Second try
#Assume wrong model
gain_rate: 20 m/s (instead of 5)
initial altitude of 50m

time_step = 1.0
scale_factor = 7.0/10 (biased weight)

Prediction = estimated_alt +
gain_rate * time_step
residual = z - predicted_alt
estimated_alt = predicted_alt +
scale_factor * residual

● Better: adjust blending

process to favor sensor

● But we are reducing value of

added model

● If measurements got worse,

or sensor got broken, then?

Correct Model
Velocity in Z = 5 m/s
Altitude = Velocity in Z * t

Third try

Great resource on this topic: Kalman and Bayesian Filters by R. Labbe

gain_rate: 5 m/s - fixed model
initial altitude of 50m

time_step = 1.0
scale_factor = 4.0/10

Prediction = estimated_alt +
gain_rate * time_step
residual = z - predicted_alt
estimated_alt = predicted_alt +
scale_factor * residual

Get a better model
@t1

● good prediction

● estimate is closer than

measurement to actual value

Correct Model
Velocity in Z = 5 m/s
Altitude = Velocity in Z * t

https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

Third try

Great resource on this topic: Kalman and Bayesian Filters by R. Labbe

gain_rate: 5 m/s - fixed model
initial altitude of 50m

time_step = 1.0
scale_factor = 4.0/10

Prediction = estimated_alt +
gain_rate * time_step
residual = z - predicted_alt
estimated_alt = predicted_alt +
scale_factor * residual

Get a better model
@t2

● high measurement

● good prediction

● estimate is closer than both

to actual value

Correct Model
Velocity in Z = 5 m/s
Altitude = Velocity in Z * t

https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

Third try

Great resource on this topic: Kalman and Bayesian Filters by R. Labbe

velocity of 5 m/s
initial altitude of 50m

time_step = 1.0
scale_factor = 4.0/10

Prediction = estimated_alt +
gain_rate * time_step

@t2

● high measurement

● good prediction

● estimate is closer than both

to actual value

Correct Model
Velocity in Z = 5 m/s
Altitude = Velocity in Z * t

https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

Third try
velocity of 5 m/s
initial altitude of 50m

time_step = 1.0
scale_factor = 4.0/10

Prediction = estimated_alt +
gain_rate * time_step

@t8

● High measurement

● Low prediction

● Estimate is closer to actual

value

Correct Model
Velocity in Z = 5 m/s
Altitude = Velocity in Z * t

OR Revise Algorithm for adjusting model
time_step = 1.0
scale_factor= 4./10
gain_scale = 1./3

def predict_alt(estimated_alt, gain_rate):

 for z in sys.stdin:
 # predict
 predicted_alt = estimated_alt + gain_rate * time_step

 # update
 residual = z - predicted_alt
 estimated_alt = predicted_alt + scale_factor * residual

 # dynamically adjust gain rate according to residual changes
 gain_rate = gain_rate + gain_scale * (residual/time_step)

 return

assume velocity of 5 m/s and initial altitude of 50m
predict_alt(50, 5)

Final try

Much nicer… still a few magic blending numbers for G and H

velocity of 5 m/s Dynamic based on residual size
initial altitude of 50m

time_step = 1.0
scale_factor = 4.0/10 # H
gain_scale = 0.3 # G: How strongly to adjust predictions

Performance close as with tuned model

Predictive Filters
● Predict next value & rate of change based on

○ Current estimate

○ Predict of how it will change

● Choose new scaling estimate between prediction and measurement
○ scales measurements

○ scales for changes in prediction gains

● Basis for Kalman filter

Predict Update

Initial
estimate

Measurement

State
Estimate

Takeaways
● Sensors capture data about robot and world state

● We cannot rely on sensors for perfect data

● To manage noise

● Calibration

● Fusion

● Filtering

