CS4501
Robotics for Soft Eng

Sensors and Noise Management

Physical
World

Sensor

® Transduces energy into measure
e Measures a physical quantity (light, force, speed, ...)
® Provides window into the world and robot

Sensor

e Transduces energy
e Measures a physical quantity (light, force, speed, ...)
® Provides window into the world and oneself

BMI088: 3 axis accelerometer / gyroscope ()

BMP388: high precision pressure sensor

VL53L1x ToF sensor to measure distance up to 4 meters
PMW3901 optical flow sensor

https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmi088-ds001.pdf

Sensor

Technical data

Parameter

Digital resolution Accelerometer (A): 16-bit
Gyroscope (G): 16-bit

® Transduces energy .

Measurement range and sensitivity (A):
+3g: 10920 LSB/g

® Measures a physical quantity (lighjis SEE

+24 g: 1365 LSB/g

262.144 LSB/°/s

® Provides window into the world a SIS

68 LSB/°/s

Zero offset (typ. over life-time) (A): £ 20 mg
(G): £ 1%/s

BMI088: 3 axis accelerometer / gyroscope ()
(A): £ 0.2 mg/K
BMP388: high precision pressure sensor et
(A): 175 pg/vHz

VL53L1x ToF sensor to measure distance up to Jis (& o mrae
PMW3901 optical flow sensor St o)

Selectable output data rates 12.5 Hz .. 2 kHz

Digital inputs/outputs SPI, I2C,
4x digital interrupts

Supply voltage (VDD)

1/0 supply voltage (VDDIO)

Temperature range

Current consumption (full operation) 5.15 mA

LGA package 3x4.5%0.95 mm*

https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmi088-ds001.pdf

Sensors in ROS

e Component support for ® Sensor messages

o Range finders o Example for images

Cameras

sensor_msgs/Image Message

Au d 10 sensor_msgs/Image.msg

FO rce Raw Message Definition

This message contains an uncompressed image
(0, 0) is at top-left corner of image
#

Pose

Header header # Header t:.n\estamp should be acquisition time of image
Header fr. should be optical frame of camera
origin of fran\e should be optical center of camera
e

Power

message associated with the image conflict
" # the behavior is undefined

O O O O O O

uint32 height # image height, that is, number of rows
uint32 vidth # image width, that is, number of columns

. Se n So r I I I eSS a e S # The legal values for encoding are in file src/image_encodings.cpp
If you want to standardize a new string format, join

ros-userselists.sourceforge.net and send an email proposing a new encoding.

string encoding # Encoding of pixels -- channel meaning, ordering, s
taken from the list of strings in include/sensor. msqs/maqe encodings.h

uint8 is_bigendian # is this data bigendian?
uint32 step # Full row length in bytes
uint8[] data # actual matrix data, size is (step * rows)

Compact Message Definitio

std_msgs/Header header

t
uint32 width
string encoding
uint8 is_bigendian
uint3? step

uints[] data

autogenerated on Mon, 13 Jan 2020 18:40:17

http://wiki.ros.org/Sensors
http://wiki.ros.org/sensor_msgs
http://wiki.ros.org/sensor_msgs

Sensor Classification

® Proprioceptive (internal state) - sense of itself
o Measures values internally to the system
o Battery level, wheel position, gyro

® Exteroceptive (external state) - sense the world

o Observations of environment
o Compass, cameras, lidars

Sensor Classification

e Proprioceptive (internal state) e Active (emits energy)
o Measures values internally to the system o Optical encoder
o Battery level, wheel position, gyro o Radar

e Exteroceptive (external state) ® Passive (passively receives energy)
o Observations of environment o Camera

o Compass, cameras, lidars o Bump

Sensor Classification

e Proprioceptive (internal state) e Active (emits energy)
o Measures values internally to the system o Optical encoder
o Battery level, wheel position, gyro o Radar
e Exteroceptive (external state) ® Passive (passively receives energy)
o Observations of environment o Camera
o Compass © Bump

Question: Examples of inter, external, active, passive in your body?

Sensor Classification

e Proprioceptive (internal state) e Active (emits energy)
o Measures values internally to the system o Optical encoder
o Battery level, wheel position, gyro o Radar
e Exteroceptive (external state) ® Passive (passively receives energy)
o Observations of environment o Camera
o Compass © Bump

Question: how the Crazyflie senses?

BMI088: 3 axis accelerometer / gyroscope (): Pr/Pa

BMP388: high precision pressure sensor: E/Pa

VL53L1x ToF sensor to measure distance up to 4 meters: E/Ac
PMW3901 optical flow sensor: E/Pa

https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmi088-ds001.pdf
https://www.st.com/content/ccc/resource/technical/document/datasheet/group3/7d/85/c8/95/fb/3b/4e/2d/DM00452094/files/DM00452094.pdf/jcr:content/translations/en.DM00452094.pdf

Sensor Classification

e Proprioceptive (internal state) e Active (emits energy)
o Measures values internally to the system o Optical encoder
o Battery level, wheel position, gyro o Radar
e Exteroceptive (external state) e Passive (passively receives energy)
o Observations of environment o Camera
o Compass o Bump

Question: how the Crazyflie sensors?

e BMIO88: 3 axis accelerometer / gyroscope (): Pr/Pa
e BMP388: high precision pressure sensor: E/Pa

e PMW3901 optical flow sensor: E/Pa

https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmi088-ds001.pdf
https://www.st.com/content/ccc/resource/technical/document/datasheet/group3/7d/85/c8/95/fb/3b/4e/2d/DM00452094/files/DM00452094.pdf/jcr:content/translations/en.DM00452094.pdf

Sonar, ultrasonic, range scanners:

1. Pulse of energy is emitted from some source

Sonar, ultrasonic, range scanners:

1. Pulse of sound is emitted from some source
2. Wave after bounces off any obstacles

Sonar, ultrasonic, range scanners:

1. Pulse of sound is emitted from some source
2. Wave after bounces off any obstacles
3. Echois received by one or multiple receptors

Sonar, ultrasonic, range scanners:

1. Pulse of sound is emitted from some source
o Wave after bounces off any obstacles
M??EL N . Echo is received by one or multiple receptors
d -2 vi ot Signal is interpreted in various ways to obtain
t is measured information about an obstacle
v is known cnst

Let's say this is ultrasonic sensor:
- v=344m/s
- If t=0.05 s then d= 8.6m

B =
.2

o= B

MODEL

d=z*v* t

Sonar, ultrasonic, range scanners:

o= B

t is measured
v is known cnst

Let's say this is ultrasonic sensor:

v= 344 m/s
If +=0.05 s then d= 8.6m

Assumptions - leaky abstractions

v= 344 m/s with dry air, 21 C, sea level
Surfaces are ...

Pulse of sound is emitted from some source
Wave after bounces off any obstacles

Echo is received by one or multiple receptors
Signal is interpreted in various ways to obtain
information about an obstacle

Sensor Noise - Modified Signal

- e

Sensor Noise - Modified Signal

® Single reading
® Belongs belong to a distribution

Sensor Noise - Modified Signal

® Single reading
e Belong belong to a distribution
e Outliers

Sensor Noise - Modified Signal

Single reading

Belong belong to a distribution
Outliers

Shifts

Managing Sensor Noise

e Calibration
e Filtering
® Fusing

Calibration

e Shifts in distribution due to environmental assumptions
® Adjusting sensor for more accurate physical measurements within context

® Process

a. Conduct standardized tests
b. Recompute constants and error estimates

c. Redefine model parameters

\

Calibration Problem

MODEL
- % *x Vv *x .I.
t is measured

v is known cnst

Let's say this is ultrasonic sensor:
- v=344m/s
- If t=0.05 seconds, then d= 8.6m

Assumptions
- v= 344 m/s with dry air, 21 C, sea level
- Surfaces are ...
- When assumptions break, measures are off!

Calibration Problem

MODEL
- % *x Vv *x .l.
t is measured

v is known cnst

Let's say this is ultrasonic sensor:
- v=344m/s
- If t=0.05 seconds, then d= 8.6m

Assumptions
- v= 344 m/s with dry air, 2t-&seadtevel -4.8
- Surfaces are ...
- When assumptions break, measures are off!

ALTITUDE

Meter (m)

0 (sea level)

3048 (10k ft)

6096 (20k ft)

9144 (30k ft)

TEMPERATURE

Celcius (°C)

21

-4.8

-24.6

-44.4

SPEED OF SOUND

m/s

344

328

316

303

Calibration Problem

MODEL
- % *x Vv *x 1.
t is measured

v is known cnst

Let's say this is ultrasonic sensor:
—v=344m/s328 —
- If t=0.05 seconds, thend = 86 8.2m

v= 344 m/s wi
- Surfaces are ...
- When assumptions break, measures are off!

Py air, 2+-Cseatevel -4.8

ALTITUDE

Meter (m)

0 (sea level)

3048 (10k ft)

6096 (20k ft)

9144 (30k ft)

TEMPERATURE

Celcius (°C)

21

-4.8

-24.6

-44.4

SPEED OF SOUND

m/s

344

328

316

303

Calibration

Test 1 Test 2 Test n

MODEL
- % *x Vv *x 1.
t is measured
v is unknown cnst

So let's fix d to find v

Test1l: d=dl, v=d1*2/+1
Test2: d=d2, v=d2*2/t2

"i'.es’rn: d=dn, v=dn*2/tn

Calibration

MODEL
- % *x Vv *x 1.
t is measured
v' is known contextualized cnst

New v
Original v

time

distance

Test 1

v= 344 293m/s

Test 2

d2

v=299m/s

Test n

d3

A

v=30Im/s

Calibration

MODEL
- % x Vv x 1.
t is measured

v is known contextualized cnst

Let's say this is ultrasonic sensor:
- v=300m/s
- If +=0.05 seconds, d= 86w 7.5m

time

d2

distance

d3

Filtering Problem

e Signal gets distorted ' jg«-;-i;?

e Interference causes lost reading \/

e Sensor pose shifts Q//
~_
~_
~_ -

\/

Filtering Problem

e Signal gets distorted
e Interference causes lost reading

Time (s): 154
Altitude (m): 3.04
‘n
): 2.44 }f
T L\
"

e Sensor pose shifts

[My g

Time (s): 269
llllllllll 9
il

1

\

| Time (5): 5.78

Basic Filters from Signal Processing

e Low-pass filters

; /M/A\

Filtering as smoothing

® Moving averages

Yt = (Xt + Xt-1+ Xt-2 + ... + Xt-window) / windowSize

Filtering as smoothing

® Moving averages

Yt = (Xt + Xt-1+ Xt-2 + ... + Xt-window) / windowSize

64 65 64 78 65 66 67

64

windowSize = 3

Filtering as smoothing

® Moving averages

Yt = (Xt + Xt-1+ Xt-2 + ... + Xt-window) / windowSize

64 65 64 78 65 66 67

64 69

windowSize = 3

Filtering as smoothing

® Moving averages

Yt = (Xt + Xt-1+ Xt-2 + ... + Xt-window) / windowSize

64 65 64 78 65 |66 67

64 69 69

windowSize = 3

Filtering as smoothing

® Moving averages

Yt = (Xt + Xt-1+ Xt-2 + ... + Xt-window) / windowSize

64 65 64 78 65 66 |67

64 69 69 70

windowSize = 3

Filtering as smoothing

® Moving averages

Yt = (Xt + Xt-1+ Xt-2 + ... + Xt-window) / windowSize

64 65 64 78 65 66 67

67

windowSize = 5

Larger windows stronger smoothing

Filtering as smoothing

® Moving averages

Yt = (Xt + Xt-1+ Xt-2 + ... + Xt-window) / windowSize

® Generalized with weights for decaying

weights

I

Yt =a Xt +al Xt-1+a2 Xt-2 +a3 Xt-3 + ..

1
. where a+al+a2+a.. =1 Data age

Filtering as smoothing

® Moving averages
Yt = (Xt + Xt-1+ Xt-2 + ... + Xt-window) / windowSize

® Generalized with weights for decaying

N

weights

Yt =a Xt +al Xt-1+a2 Xt-2 + a3 Xt-3 + .. where a+al+a2+d.. = 1 " Dataage

N

® Generalized with exponential weights for decaying

Ytz a[Xt+(1-a)Xt-1+(1-ay2 X+-2 + (1 - @)*3 Xt-3 + ..]

weights

Data age

Filtering as smoothing

® Generalized with exponential weights for decaying

Yt=zaXt+(1-a)Xt-1+(1-a)*2 Xt-2+(1-a)*3 Xt-3 + ...
Or efficiently approximated
Ytz Vi1 +a (Xt - Yt-1)

== \/elocity sensor == 0.25 0.5 == 075 == 09

e Selection of ais crucial

o acloser to 0: closer to last value
o acloserto 1: no filtering

What if our sensor is still really noise?

Add sensors with complementary attributes and fuse them

FUSE Altitude

What if our sensor is still really noise?

» FUSE

f,-«ﬁ'f.; —=

/ Y~.. i N A\
'.‘I'i' 3 ﬁ‘:)i_
| y -‘Q;;j‘.;):\ \ "‘
& [5 R} i)

f.«& ",'ﬁ 4/

g S

Altitude

What if our sensor is still really noise?

\/ Estimated altitude
a®)

v ®

What if our sensor is still really noise?

Sd

40449 JO 93uey

What if our sensor is still really noise?

/‘ FUSE

Altitude

) A7 &,

£ X o o A

A .:-"\\j‘ 'J"J |

1 A % 5/ \
k

Sd

Ve

What if our sensor is still really noise?

Average

Altitude

.,
%0}

Estimated altitude

Ve

What if our sensor is still really noise?

More informatjon in ranges

K feasible

Altitude

=1
e

What if our sensor is still really noise?

K feasible

Altitude Estimated altitude O

58" % Average

What if our sensor is still really noise?

What if overlapping range was tighter?

a *

Altitude Estimated-attitudeave
3

What if our sensor is still really noise?

What if overlapping range was tighter?
e Within range, identify closest to average

’ *
90

Altitude Estimated-attitude-ave

FUSE

What if our sensor is still really noise?

What if overlapping range was tighter?
e Within range, identify closest to average
e Use different fusing function

Altitude

FUSE

\ Let's favor GPS... but what if flying indoors?

Y Weighted Average

What if our sensor is still really noise?

Altitude

FUSE

Multiple sensors are better than one.
- Need to learn how to combine them
= W) ¢ to leverage all information

What if our sensors are still noise?

Altitude

Complex Filters

100

GPS Altitude
(V)]
S

What is the drone doing?

GPS Altitude

100

50

* likely

nope

It is not going down
It does not seem to be hovering

It seems to be going up...

GPS Altitude

100

50

————

Going up by how much?

100

50

Altitude

Velocity inZ =5 m/s
Altitude = Velocity inZ * t

5s 10s

If | had another sensor with a model...

opmInTY

100

50

VelocityinZ =5m/s + 1

5s 10s

If | had another sensor with a model... but is not perfect either

SPMINTY

100

50

Predict X,

Last estimate x_,

56 10s

SPMINTY

100

50

Last estimate x_,

@® Measure z,

Predict X,

5s

10s

opmInTY

100 ® Measure Z,
B J
Predict X,

50

Prediction and Measurement
Last estimate x_, do not match
0]
5s 10s

SpMInIY

@® Measure Z,

100
Predict X,
50
Last estimate X, 1
0]
10s

Blend

5s

opmInTY

100

50

Measure Z,

Residual

Predict X,

Last estimate x__,

5s 10s

Blend prediction and measurement -- update

apmIny

Measure Z,

100 T
o l New estimate x,
Predict >/<\t
50
Last estimate >/(\t_1
0]
5s 10s

Estimate = 0 (measurement, prediction)

apmIny

100

50

Measure z_

Last estimate x_,

Predict x_,

5s

Estimate = 0 (measurement, prediction)

10s

apmIny

Measure z_

Predict X,

100
Last estimate x_,
Predict >/<\t_1
50
0
5s 10s

Estimate = 0 (measurement, prediction)

Prediction

Sensor A
Model Measurement

Estimate

Predict

Estimate

Estimate = a (measurement, prediction)

Algorithm

time_step = 1.0 # sec
scale_factor = 4.0/10

def predict_alt(estimated_alt, gain_rate):
for z in sys.stdin:
predict
predicted_alt = estimated_alt + gain_rate * time_step
update
residual = z - predicted_alt
estimated_alt = predicted_alt + scale_factor * residual

return

assume velocity of 5 m/s and initial altitude of 50m
predict_alt(50, 5)

Correct Model
Velocity inZ =5 m/s
Altitude = Velocity in Z * t

First try

#Assume wrong model
gain_rate: 20 m/s (instead of 5)
initial altitude of 50m

A measure == prediction estimate == == actual

time_step = 1.0
scale_factor = 4.0/10

prediction = estimated_alt +
gain_rate * time_step

residual = z - predicted_alt
estimated_alt = predicted_alt +
scale_factor * residual

@tl

Estimate between
measure and
prediction

Bad model hurts

Correct Model
Velocity inZ =5 m/s
Altitude = Velocity in Z * t

Second try

#Assume wrong model
gain_rate: 20 m/s (instead of 5)
initial altitude of 50m

A measure == prediction estimate == == actual

time_step = 1.0
scale_factor = 7.0/10 (biased weight)

Prediction = estimated_alt +
gain_rate * time_step

residual = z - predicted_alt
estimated_alt = predicted_alt +
scale_factor * residual

e Better: adjust blending
process to favor sensor

e But we are reducing value of
added model

e If measurements got worse,

timestep

or sensor got broken, then?

Correct Model
Velocity inZ =5 m/s

.I.h i rd try Altitude = Velocity in Z * t

A measure == prediction estimate == == gctual

initial altitude of 50m

time_step = 1.0
scale_factor = 4.0/10

Prediction = estimated_alt +
gain_rate * time_step

residual = z - predicted_alt
estimated_alt = predicted_alt +
scale_factor * residual

Get a better model
@tl
o good prediction
° estimate is closer than
measurement to actual value

Great resource on this topic: Kalman and Bayesian Filters by R. Labbe

https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

Correct Model
Velocity inZ =5 m/s

.I.h i rd try Altitude = Velocity in Z * t

A measure == prediction estimate == == gctual

initial altitude of 50m

time_step = 1.0
scale_factor = 4.0/10

Prediction = estimated_alt +
gain_rate * time_step

residual = z - predicted_alt
estimated_alt = predicted_alt +
scale_factor * residual

Get a better model

@12
° high measurement

good prediction

estimate is closer than both

to actual value

Great resource on this topic: Kalman and Bayesian Filters by R. Labbe

https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

Correct Model
Velocity inZ =5 m/s

.I.h i rd try Altitude = Velocity in Z * t

A measure == prediction estimate == == gctual Ve‘IOCiTy of 5m/s
initial altitude of 50m

time_step = 1.0
scale_factor = 4.0/10

Prediction = estimated_alt +
gain_rate * time_step

@12
high measurement
good prediction
estimate is closer than both
to actual value

Great resource on this topic: Kalman and Bayesian Filters by R. Labbe

https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

Correct Model
Velocity inZ =5 m/s

.I.h i rd try Altitude = Velocity in Z * t

A measure == prediction estimate == == gctual Ve‘IOCiTy of 5m/s
initial altitude of 50m

time_step = 1.0
scale_factor = 4.0/10

Prediction = estimated_alt +
gain_rate * time_step

@18
High measurement
Low prediction
Estimate is closer to actual
value

OR Revise Algorithm for adjusting model

time_step = 1.0
scale_factor= 4./10
gain_scale = 1./3

def predict_alt(estimated_alt, gain_rate):
for z in sys.stdin:
predict
predicted_alt = estimated_alt + gain_rate * time_step
update
residual = z - predicted_alt

estimated_alt = predicted_alt + scale_factor * residual

dynamically adjust gain rate according to residual changes
gain_rate = gain_rate + gain_scale * (residual/time_step)

return

assume velocity of 5 m/s and initial altitude of 50m
predict_alt(50, 5)

Final try

A measure == prediction estimate == == actual velocity of B-m#s Dynamic based on residual size
initial altitude of 50m

time_step = 1.0
scale_factor = 4.0/10 # H
gain_scale = 0.3 # G: How strongly to adjust predictions

Altitude

/\// Performance close as with tuned model
1/_’//

o] 2 4

Much nicer... still a few magic blending numbers for G and H

Predictive Filters

® Predict next value & rate of change based on
O Current estimate
o Predict of how it will change

® Choose new scaling estimate between prediction and measurement
@) scales measurements
o scales for changes in prediction gains
Measurement

Initial
estimate /
Update
State /

Estimate

® Basis for Kalman filter

Takeaways

® Sensors capture data about robot and world state
e \We cannot rely on sensors for perfect data
® To manage noise

® Calibration

® Fusion

® Filtering

