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Sense Think Act

Physical 
World



Sensor
● Transduces energy into measure  

● Measures a physical quantity (light, force, speed, …)

● Provides window into the world and robot 



Sensor

● BMI088: 3 axis accelerometer / gyroscope ()
● BMP388: high precision pressure sensor 
● VL53L1x ToF sensor to measure distance up to 4 meters 
● PMW3901 optical flow sensor 

● Transduces energy  

● Measures a physical quantity (light, force, speed, …)

● Provides window into the world and oneself

https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmi088-ds001.pdf
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Sensors in ROS
● Component support for 

○ Range finders

○ Cameras

○ Audio

○ Force

○ Pose

○ Power

○ …

● Sensor messages

● Sensor messages
○ Example for images

http://wiki.ros.org/Sensors
http://wiki.ros.org/sensor_msgs
http://wiki.ros.org/sensor_msgs


Sensor Classification
● Proprioceptive (internal state) - sense of itself

○ Measures values internally to the system

○ Battery level, wheel position, gyro

● Exteroceptive (external state) - sense the world
○ Observations of environment

○ Compass, cameras, lidars 
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● Active (emits energy) 
○ Optical encoder

○ Radar

● Passive (passively receives energy)
○ Camera

○ Bump 
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Question: Examples of inter, external, active, passive in your body?



Sensor Classification
● Proprioceptive (internal state)
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● Exteroceptive (external state)
○ Observations of environment

○ Compass 

● Active (emits energy) 
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○ Camera

○ Bump 

Question: how the Crazyflie senses?

● BMI088: 3 axis accelerometer / gyroscope (): Pr/Pa
● BMP388: high precision pressure sensor: E/Pa
● VL53L1x ToF sensor to measure distance up to 4 meters: E/Ac
● PMW3901 optical flow sensor: E/Pa
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Sonar, ultrasonic, range scanners: 

1. Pulse of energy is emitted from some source
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Sonar, ultrasonic, range scanners: 

1. Pulse of sound is emitted from some source 
2. Wave after bounces off any obstacles
3. Echo is received by one or multiple receptors 



MODEL
d = ½ * v *  t
t is measured
v is known cnst

Sonar, ultrasonic, range scanners: 

1. Pulse of sound is emitted from some source 
2. Wave after bounces off any obstacles
3. Echo is received by one or multiple receptors 
4. Signal is interpreted in various ways to obtain 

information about an obstacle

Let’s say this is ultrasonic sensor: 
- v= 344 m/s
- If t=0.05 s then d= 8.6m



MODEL
d = ½ * v *  t
t is measured
v is known cnst

Sonar, ultrasonic, range scanners: 

1. Pulse of sound is emitted from some source 
2. Wave after bounces off any obstacles
3. Echo is received by one or multiple receptors 
4. Signal is interpreted in various ways to obtain 

information about an obstacle

Let’s say this is ultrasonic sensor: 
- v= 344 m/s
- If t=0.05 s then d= 8.6m

Assumptions - leaky abstractions
- v= 344 m/s with dry air, 21 C, sea level
- Surfaces are …  



Sensor Noise - Modified Signal

● Single reading 
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Sensor Noise - Modified Signal

● Single reading
● Belong belong to a distribution
● Outliers
● Shifts



Managing Sensor Noise
● Calibration

● Filtering

● Fusing



Calibration  
● Shifts in distribution due to environmental assumptions

● Adjusting sensor for more accurate physical measurements within context 

● Process
a. Conduct standardized tests

b. Recompute constants and error estimates

c. Redefine model parameters 



Calibration Problem

MODEL
d = ½ * v *  t
t is measured
v is known cnst

Let’s say this is ultrasonic sensor: 
- v= 344 m/s
- If t=0.05 seconds, then d= 8.6m

Assumptions
- v= 344 m/s with dry air, 21 C, sea level
- Surfaces are …  
- When assumptions break, measures are off!



Calibration Problem

MODEL
d = ½ * v *  t
t is measured
v is known cnst

Let’s say this is ultrasonic sensor: 
- v= 344 m/s
- If t=0.05 seconds, then d= 8.6m

Assumptions
- v= 344 m/s with dry air, 21 C, sea level -4.8 
- Surfaces are …  
- When assumptions break, measures are off!

ALTITUDE TEMPERATURE SPEED OF SOUND

Meter (m) Celcius (°C) m/s

0 (sea level) 21 344

3048 (10k ft) -4.8 328

6096 (20k ft) -24.6 316

9144 (30k ft) -44.4 303



Calibration Problem

MODEL
d = ½ * v *  t
t is measured
v is known cnst

Let’s say this is ultrasonic sensor: 
- v= 344 m/s 328
- If t=0.05 seconds, then d = 8.6m 8.2m

Assumptions
- v= 344 m/s with dry air, 21 C, sea level -4.8 
- Surfaces are …  
- When assumptions break, measures are off!

ALTITUDE TEMPERATURE SPEED OF SOUND

Meter (m) Celcius (°C) m/s

0 (sea level) 21 344

3048 (10k ft) -4.8 328

6096 (20k ft) -24.6 316

9144 (30k ft) -44.4 303



Calibration

MODEL
d = ½ * v *  t
t is measured
v is unknown cnst

So let’s fix d to find v

Test 1:  d = d1,   v = d1 * 2 / t1
Test 2:  d = d2,  v = d2 * 2 / t2
...
Test n:  d = dn,   v = dn * 2 / tn

d1
d2

d3

Test 1 Test 2 Test n



Calibration

MODEL
d = ½ * v *  t
t is measured
v’ is known contextualized cnst 

d1
d2

d3

distance

time

v= 344 298m/s

New v

Original v

Test 1 Test 2 Test n

v= 299m/s

v= 301m/s



Calibration

MODEL
d = ½ * v *  t
t is measured
v’ is known contextualized cnst 
Let’s say this is ultrasonic sensor: 

- v = 300 m/s
- If t=0.05 seconds, d= 8.6m 7.5m

d1
d2

d3

distance

time

Test 1 Test 2 Test n



Filtering Problem 

● Signal gets distorted

● Interference causes lost reading

● Sensor pose shifts



Filtering Problem 

● Signal gets distorted

● Interference causes lost reading

● Sensor pose shifts



Basic Filters from Signal Processing
• Low-pass filters
• High-pass filters
• Band filters 



Filtering as smoothing 
● Moving averages

Yt = (Xt + Xt-1 + Xt-2 + … + Xt-window) / windowSize
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Filtering as smoothing 
● Moving averages

Yt = (Xt + Xt-1 + Xt-2 + … + Xt-window) / windowSize

… 64 65 64 78 65 66 67 64 …

windowSize = 5       

67

Larger windows stronger smoothing



Filtering as smoothing 
● Moving averages

Yt = (Xt + Xt-1 + Xt-2 + … + Xt-window) / windowSize

● Generalized with weights for decaying

Yt = α Xt + α1 Xt-1 + α2 Xt-2 + α3 Xt-3 + …   where α+α1+α2+α… = 1

w
e
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Data age
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Yt = α Xt + α1 Xt-1 + α2 Xt-2 + α3 Xt-3 + …   where α+α1+α2+α… = 1

● Generalized with exponential weights for decaying

Yt = α [Xt + (1 – α) Xt-1 + (1 - α)*2 Xt-2 + (1 - α)*3 Xt-3 + …] w
e
i
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Filtering as smoothing 

● Generalized with exponential weights for decaying

Yt = α Xt + (1 – α) Xt-1 + (1 - α)*2 Xt-2 + (1 - α)*3 Xt-3 + …
Or efficiently approximated 
Yt =  Yt-1  + α ( Xt - Yt-1)

● Selection of α is crucial
○ α closer to 0: closer to last value
○ α closer to 1: no filtering



What if our sensor is still really noise? 
Add sensors with complementary attributes and fuse them 

FUSE Altitude



What if our sensor is still really noise? 

FUSE Altitude



What if our sensor is still really noise? 
P

S

True altitude

Estimated altitude
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What if our sensor is still really noise? 

FUSE Altitude

P
S

G
P

S

True altitude
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FUSE Altitude

P
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What if our sensor is still really noise? 

FUSE Altitude

P
S

G
P

S

True altitude
feasible

More information in ranges



What if our sensor is still really noise? 

FUSE Altitude

P
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Estimated altitude

Average

feasible



Estimated altitude avg

What if our sensor is still really noise? 

FUSE Altitude

Average

P
S

G
P

S

True altitude

What if overlapping range  was tighter?



Estimated altitude avg

What if our sensor is still really noise? 

FUSE Altitude

Average

P
S

G
P

S

True altitude

What if overlapping range  was tighter?
● Within range, identify closest to average



What if our sensor is still really noise? 

FUSE Altitude

Weighted Average

Let’s favor GPS… but what if flying indoors?

What if overlapping range  was tighter?
● Within range, identify closest to average
● Use different fusing function



What if our sensor is still really noise? 

FUSE Altitude

Multiple sensors are better than one.
Need to learn how to combine them
to leverage all information



What if our sensors are still noise? 

FUSE Altitude

Complex Filters 
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What is the drone doing?
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It is not going down
It does not seem to be hovering 
It seems to be  going up… 

100
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0

nope

likely
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 Going up by how much?
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If I had another sensor with a model…  

Velocity in Z  = 5 m/s
Altitude = Velocity in Z * t

10s5s
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If I had another sensor with a model… but is not perfect either 

Velocity in Z  = 5 m/s ± 1

10s5s
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Last estimate x
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t
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Prediction and Measurement 
do not match
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Blend prediction and measurement -- update

10s5s

Last estimate x
t-1

Predict x
t

Measure z
t

Residual
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Estimate = α (measurement, prediction)

10s5s

Last estimate x
t-1

Predict x
t

Measure z
t

New estimate x
t

α
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PredictModel 
Estimate

Update

Estimate

Sensor  A
Measurement

Estimate = α (measurement, prediction)

Prediction



Algorithm
time_step = 1.0  # sec
scale_factor = 4.0/10

def predict_alt(estimated_alt, gain_rate):     
    
    for z in sys.stdin: 
        # predict  
        predicted_alt = estimated_alt + gain_rate * time_step

        # update  
        residual = z - predicted_alt
        estimated_alt = predicted_alt + scale_factor * residual
        
    return 

# assume velocity of 5 m/s and initial altitude of 50m
predict_alt(50, 5)



First try
#Assume wrong model 
gain_rate: 20 m/s (instead of 5)
initial altitude of 50m

time_step = 1.0   
scale_factor = 4.0/10

prediction = estimated_alt + 
gain_rate * time_step
residual = z - predicted_alt
estimated_alt = predicted_alt + 
scale_factor * residual

@t1

● Estimate between 

measure and 

prediction

● Bad model hurts

Correct Model
Velocity in Z  = 5 m/s
Altitude = Velocity in Z * t



Second try
#Assume wrong model 
gain_rate: 20 m/s (instead of 5)
initial altitude of 50m

time_step = 1.0   
scale_factor = 7.0/10 (biased weight)

Prediction = estimated_alt + 
gain_rate * time_step
residual = z - predicted_alt
estimated_alt = predicted_alt + 
scale_factor * residual

● Better: adjust blending 

process to favor sensor 

● But we are reducing value of 

added model

● If measurements got worse, 

or sensor got broken, then?

Correct Model
Velocity in Z  = 5 m/s
Altitude = Velocity in Z * t



Third try

Great resource on this topic: Kalman and Bayesian Filters  by R. Labbe

gain_rate: 5 m/s  - fixed model
initial altitude of 50m

time_step = 1.0   
scale_factor = 4.0/10

Prediction = estimated_alt + 
gain_rate * time_step
residual = z - predicted_alt
estimated_alt = predicted_alt + 
scale_factor * residual

Get a better model
@t1

● good prediction

● estimate is closer than 

measurement to actual value

Correct Model
Velocity in Z  = 5 m/s
Altitude = Velocity in Z * t

https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python


Third try

Great resource on this topic: Kalman and Bayesian Filters  by R. Labbe

gain_rate: 5 m/s  - fixed model
initial altitude of 50m

time_step = 1.0   
scale_factor = 4.0/10

Prediction = estimated_alt + 
gain_rate * time_step
residual = z - predicted_alt
estimated_alt = predicted_alt + 
scale_factor * residual

Get a better model
@t2

● high measurement

● good prediction

● estimate is closer than both  

to actual value

Correct Model
Velocity in Z  = 5 m/s
Altitude = Velocity in Z * t

https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python


Third try

Great resource on this topic: Kalman and Bayesian Filters  by R. Labbe

velocity of 5 m/s  
initial altitude of 50m

time_step = 1.0   
scale_factor = 4.0/10

Prediction = estimated_alt + 
gain_rate * time_step

@t2

● high measurement

● good prediction

● estimate is closer than both  

to actual value

Correct Model
Velocity in Z  = 5 m/s
Altitude = Velocity in Z * t

https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python


Third try
velocity of 5 m/s  
initial altitude of 50m

time_step = 1.0   
scale_factor = 4.0/10

Prediction = estimated_alt + 
gain_rate * time_step

@t8

● High measurement

● Low prediction

● Estimate is closer to actual 

value

Correct Model
Velocity in Z  = 5 m/s
Altitude = Velocity in Z * t



OR Revise Algorithm for adjusting model
time_step = 1.0
scale_factor= 4./10
gain_scale = 1./3

def predict_alt(estimated_alt, gain_rate):     
    
    for z in sys.stdin: 
        # predict  
        predicted_alt = estimated_alt + gain_rate * time_step
    
        # update     
        residual = z - predicted_alt
        estimated_alt  =  predicted_alt  +  scale_factor * residual  

        # dynamically adjust gain rate according to residual changes
        gain_rate = gain_rate + gain_scale  * (residual/time_step)  
        
    return  

# assume velocity of 5 m/s and initial altitude of 50m
predict_alt(50, 5)



Final try

Much nicer… still a few magic blending numbers for G and H

velocity of 5 m/s  Dynamic based on residual size
initial altitude of 50m

time_step = 1.0   
scale_factor = 4.0/10  # H
gain_scale = 0.3 # G: How strongly to adjust predictions

Performance close as with tuned model



Predictive Filters
● Predict next value & rate of change based on 

○ Current estimate 

○ Predict of how it will change

● Choose new scaling estimate between prediction and measurement
○ scales measurements

○ scales for changes in prediction gains

● Basis for Kalman filter

Predict Update

Initial 
estimate

Measurement

State 
Estimate



Takeaways
● Sensors capture data about robot and world state

● We cannot rely on sensors for perfect data

● To manage noise

● Calibration

● Fusion

● Filtering


