
CS4501
Robotics for Soft Eng

Control



Problem: Ride over straight line
● Sensors are noisy

○ Eyes, ears-balance, ... 

● Actuators are noisy
○ Muscles, bike gears, breaks, ...

● Environment changes
○ Street, Grass, Rock, Mud, … 



Sense Think Act

Physical 
World



Sense Think Act

Physical 
World

Planning

Perception

Low-level 
Control



Sense Act

Physical 
World

Low-level 
Control

Goal of Controller
Sensed Output = Setpoint

Setpoint

Output



● Controller aims to make Sensed Output = Setpoint

● Terms
● Plant (system) with Inputs (u) and Outputs (y)
● Setpoint (r)

PlantControllerSetpoint (rt ) 

Input (ut) Output (yt+1)



PlantControllerSetpoint(r)
Input (u)

Output (y)

Heater
Controller

Temperature
Fuel

Heats up



PlantControllerSetpoint(r)
Input (u)

Output (y)

Hovering
Controller

Altitude
Vel-z Moves up/down

Heater
Controller

Temperature
Fuel

Heats up



PlantControllerSetpoint(r)
Input (u)

Output (y)

Hovering
Controller

Altitude
Vel-z Moves up/down

Turning ControllerSteering Angle
Torque

Turns

Heater
Controller

Temperature
Fuel

Heats up



PlantControllerSetpoint(r)
Input (u)

Output (y)

Hovering
Controller

Altitude
Vel-z Moves up/down

Turning ControllerSteering Angle
Torque

Turns

Heater
Controller

Temperature
Fuel

Heats up

r, u, y can all be in different units



Families of controllers



PlantController
r

t

u

t y

t+1

Open-loop controller

● Assumes we have a Good Model of the Plant  

● Computes u
t 

input to plant given r
t

:  ut = F(rt)    

Plant Model



RotorControllerTarget 
Velocity

Voltage
Velocity

Open-Loop Controller Example

● Computes input to plant based on model

ut = f(rt ) V
t



RotorControllerTarget 
Velocity

Voltage
Velocity

Open-Loop Controller Example

● Computes input to plant based on model

● Assumes we have a Good Model of Drone Rotor: Voltaget = f(TargetVelt)

ut = f(rt ) V
t



Sense Think Act

• Good enough to keep temperature steady with expected air volume/flow
• Not as good if there is variation in air flow or air volume  

Low-level 
Control

Open-Loop Controller 



Sense Think Act

• Good enough for rpm on motors, drone on the ground, no propellers
• Not as good with propellers due to their differences
• Pretty bad when flying due to  variations in angle, pressure, drafts, …

• Good enough to keep temperature steady with expected air volume/flow
• Not as good if there is variation in air flow or air volume  

Low-level 
Control

Open-Loop Controller 



Open-Loop Controller - Self test 
● Eyes closed

● Rotate 5 times in place

● Iterate

○ Walk 3 steps, rotate 90 



Open-Loop Controller Example

● Drive over a straight line



Open-Loop Controller (less ideal) Example

● Drive over straight line
● Open-loop ≈ close your eyes (no feedback)

○ Small errors will accumulate over time
○ Wheel may be a bit crooked
○ Disturbances (hitting a rock) may cause drastic changes

t0 t1 t2 t3 t4

Target 
Line



Limitations of Open-Loop Controller
● Performance depends on model/s

○ Fidelity in capturing relationships between input and output

○ Robustness to environment variations

○ Generalizability to other plants 

● Good-enough Models may be difficult or impossible to derive



Sense Act

Physical 
World

Low-level 
Control



Close-Loop Controller
● Incorporates feedback to the Controller 

○ Knows impacts of actions  

○ Diffs setpoint and sensed output  

○ Aims to make that difference zero 



Close-Loop Controller
● Incorporates feedback to the Controller 

○ Knows impacts of actions  

○ Diffs setpoint and output  

○ Aims to make that difference zero 

PlantControllerSetpoint

 u

Output



Close-Loop Controller
● Incorporates feedback to the Controller 

○ Knows impacts of actions  

○ Diffs setpoint and sensed output  

○ Aims to make that difference zero 

PlantController
ut = F(e)

 u

Output

Sensor

Error = Setpoint - Output
r

t



Close-Loop Controller
● Incorporates feedback to the Controller 

○ Knows impacts of actions  

○ Diffs setpoint and sensed output  

○ Aims to make that difference zero 

PlantController
ut = F(e)

 u

Output

Sensor

e
r

t



Close-Loop Controller: Bang-Bang
● Incorporates feedback to the Controller 

○ Knows impacts of actions  

○ Diffs setpoint and sensed output  

○ Aims to make that difference zero 

Plant
Controller

On = F(e>𝛅)
Off = F(e<Ɣ)

 u Binary
Output

Sensor

e
r

t



Close-Loop Controller: Bang-Bang

Plant
Controller

On = F(e<𝛅)
Off = F(e>Ɣ)

 u Binary 
(on/off) Output

Sensor

e
r

t

te
m

p
er

at
u

re

70

��
Ɣ

on off



Close-Loop Controller: Bang-Bang
Large hysteresis: sawtooth 
oscillation - uncomfortable

Plant
Controller

On = F(e<𝛅)
Off = F(e>Ɣ)

 u Binary 
(on/off)

Output

Sensor

e
r

t

te
m

p
er

at
u

re 70

Narrow hysteresis: burnout



Close-Loop Controller: Bang-Bang

Plant
Controller

On = F(e<𝛅)
Off = F(e>Ɣ)

u Binary
(45 left, 
45 right)

Output

Sensor

e
r

t

St
ee

ri
n

g 
an

gl
e

��

Ɣ

L R



Close-Loop Controller: Proportional
● Objective: adjust based on magnitude of error

F(e)    = Kp (et) 
                = Kp (rt - ot)
● Example
              = 0.5 (Setpoint – Vt )

PlantController
ut = F(e)

r

t

 u

Output

Sensor

e



Close-Loop Controller: Proportional Example

● Drive over straight line
● Process

○ Observe line
○ Compute wheel misalignment
○ Change steering angle proportional to misalignment



Close-Loop Controller: Proportional Example

● Drive over straight line
● Process

○ Observe line
○ Compute wheel misalignment
○ Change steering angle proportional to misalignment

PlantController
ut = F(d)

Target 

Line

 Steer 

towards 

line in 

proportion 

to “d”

Output

Location - x

“d”

Distance to line



Close-Loop Controller: Proportional Example

t0 t1 t2 t3 t4

PlantController
steert = 0.3 * d

Target 

Line

Output

Location - x

“d”

Distance to line

Target 
Line

 Steer 

towards 

line in 

proportion 

to “d”



Close-Loop Controller: Proportional Example

t0 t1 t2 t3 t4

PlantController
steert = 0.3 * d

Target 

Line

 Steer 

towards 

line

Output

Location - x

“d”

Distance to line

Target 

Line

Target 
Line



Close-Loop Controller: Proportional Example

t0 t1 t2 t3 t4

PlantController
steert = 0.3 * d

Target 

Line

 Steer 

towards 

line

Output

Location - x

“d”

Distance to line

Target 

Line

Target 
Line



Close-Loop Controller: Proportional Example

t0 t1 t2 t3 t4

PlantController
steert = 0.3 * d

Target 

Line

 Steer 

towards 

line

Output

Location - x

“d”

Distance to line

Target 

Line

Target 
Line



Close-Loop Controller: Proportional Example

t0 t1 t2 t3 t4

PlantController
steert = 0.3 * d

Target 

Line

 Steer 

towards 

line

Output

Location - x

“d”

Distance to line

Target 

Line

Larger distance → Larger Angle Correction

Target 
Line



t1

Close-Loop Controller: Proportional Example

t0 t2 t3 t4

PlantController
steert = 0.3 * d

Target 

Line

 Steer 

towards 

line

Output

Location - x

Distance to line

Target 
Line



t1

Close-Loop Controller: Proportional Example

t0 t2 t3 t4

PlantController
steert = 0.3 * d

Target 

Line

 Steer 

towards 

line

Output

Location - x

Distance to line

Target 
Line



t1

Close-Loop Controller: Proportional Example

t0 t2 t3 t4

PlantController
steert = 0.3 * d

Target 

Line

 Steer 

towards 

line

Output

Location - x

Distance to line

Target 
Line



t1

Close-Loop Controller: Proportional Example

t0 t2 t3 t4

PlantController
steert = 0.3 * d

Target 

Line

 Steer 

towards 

line

Output

Location - x

Distance to line

Target 
Line



t1

Close-Loop Controller: Proportional Example

t0 t2 t3 t4

PlantController
steert = 0.3 * d

Target 

Line

 Steer 

towards 

line

Output

Location - x

Distance to line

tntn-1

Target 
Line



Exercise: Develop Proportional Controller for Car Cruise Control
Plant:

Set point (rt):

Input to Plant (u):

Output of Plant (y):

Sensor:

PlantController
ut = F(e)

r

t

 u

Output

Sensor

e



Exercise: Develop Proportional Controller for Car Cruise Control
Plant: Engine

Set point (rt):  target speed

Input to Plant (u): torque

Output of Plant (y): vel/acc

Sensor: velocimeter

PlantController
ut = F(e)

r

t

 u

Output

Sensor

e

Expected Disturbances:



Exercise: Develop Proportional Controller for Car Cruise Control
Plant: Engine

Set point (rt):  target speed

Input to Plant (u): torque

Output of Plant (y): vel/acc

Sensor: velocimeter

PlantController
ut = F(e)

r

t

 u

Output

Sensor

e

Expected Disturbances: hills, turns, traffic 



t1

Close-Loop Controller: Proportional Example

t0 t2 t3 t4

PlantController
steert = 0.3 2 * d

Target 

Line

 Steer 

towards 

line

Output

Location - x

Distance to line

tntn-1

Changes to Kp

Target 
Line



t1

Close-Loop Controller: Proportional Example

t0 t2 t3 t4

PlantController
steert = 0.3 5 * d

Target 

Line

 Steer 

towards 

line

Output

Location - x

Distance to line

tntn-1

Changes to Kp



t1

Close-Loop Controller: Proportional Example

t0 t2 t3 t4

PlantController
steert = 0.3 0.1 * d

Target 

Line

 Steer 

towards 

line

Output

Location - x

Distance to line

tntn-1

Changes to Kp

Target 
Line



Close-Loop Controller: Proportional Example

t0 t2 t4

PlantController
steert = 0.3 2 * d

Target 

Line

 Steer 

towards 

line

Output

Location - x

Distance to line

tntn-1

Changes to Kp

Target 
Line

Scale of t matters!



Close-Loop Controller: Proportional Derivative
● Objective: reduce oscillation

● Adjust input based on rate of output change  
○ If too slow, increase input 
○ If too fast, decrease input 

F(e) = Kp (et) + KD (et – et-1) 

PlantController
ut = F(e)

r

t

 u

Output

Sensor

e



t1

Close-Loop Controller: Proportional Derivative Example

t0 t2 t3 t4 tntn-1

e
t

e
t+1

● Error is reducing from t0 to t1
● Derivative term is negative 
● Derivative counters Proportional term

F(e) = Kp (et) + KD (et – et-1) 

t1t0 t2 t3 t4 tntn-1

et – et-1

Target 
Line



t1

Close-Loop Controller: Proportional Derivative Example

t0 t2 t3 t4 tntn-1

e
t e

t+1

● Error is reducing from t0 to t1 to t2
● Derivative term is still negative 
● Derivative term becomes smaller as amount of error decreases

F(e) = Kp (et) + KD (et – et-1) 

e
t+2

t1t0 t2 t3 t4 tntn-1

et – et-1

Target 
Line



t1

Close-Loop Controller: Proportional Derivative Example

t0 t2 t3 t4 tntn-1

e
t e

t+1

● Error is constant
● Derivative term is zero
● Only proportional term correction

F(e) = Kp (et) + KD (et – et-1) 

e
t+2

t1t0 t2 t3 t4 tntn-1

et – et-1

e
t+3Target 

Line



t1

Close-Loop Controller: Proportional Derivative Example

t0 t2 t3 t4 tntn-1

D term damps the aggressiveness of P
Proportional to error growth

Target 
Line



Exercise: Develop PD Controller for Altitude Controller
Plant:

Set point (rt):

Input to Plant (u):

Output of Plant (y):

Sensor:



Close-Loop Controller: Proportional + Derivative + Integral
● Objective: reduce steady state error 

● Sum total error over time (potential for overcompensation)

F(e) = Kp (et) + KD (et – et-1) + KI (e0 + e1 + e2 + … + et-1) 



Close-Loop Controller: Proportional + Integral Example

t1t0 t2 t3 t4 tntn-1

● Steady-State error is the final difference with setpoint
○ P gets to stable point that is deemed too far from setpoint

● Caused by disturbances 
○ Gravity 
○ More friction turning right than left
○ Leaning certain way

P 
Controller



Close-Loop Controller: Proportional + Integral Example

t1t0 t2 t3 t4 tntn-1

F(e) = Kp (et) + KI (e0 + e1 + e2 + … + et-1) 

P 
Controller



Close-Loop Controller: Proportional + Integral Example

t1t0 t2 t3 t4 tntn-1

Integral
Term

F(e) = Kp (et) + KI (e0 + e1 + e2 + … + et-1) 

t1t0 t2 t3 t4 tntn-1

P 
Controller

PI 
Controller



Close-Loop Controller: Proportional + Integral Example

Integral Windup curse
• Integral term increases while output is ramping up 
• This can cause overshoot and oscillation 
• Solution is to limit integral term 

t1t0 t2 t3 t4 tntn-1

P 
Controller

F(e) = Kp (et) + KI (e0 + e1 + e2 + … + et-1) 



PID Controller

Plant

Controller
ut = F(e)

r

t

 u

Output

Sensor

e

P.    Kp e(t)

I.      KI ∫ et dt

D.    KD de(t)/dt)

∑

Note impact of t choice!!!



In Code
float setpoint = read()
float lasterr = 0;    
float integral = 0; 

float  PIDcontroller (float measure) {
err = setpoint - measure;
dt = currentTime - lastTime;

       integral += err * dt;
float deriv = (err – lasterr ) / dt;
float output = Kp*err + Ki*integral + Kd*deriv;
lasterr = err;
lastTime = currentTime
return output;

}
Missing
• Definition of K coefficients
• Bounds on output
• Bounds/reset integral term



Caveat: Tuning depends on Sampling Rate

setpoint

Time

Sampling rate = 2hz

Sampling rate = 4hz

Sampling rate = 100hz



Controller Performance
● Stability

○ Error should converge to within threshold

○ No oscillation 

● Performance
○ Rise time - within threshold of steady state

○ Overshoot - over final value

○ Settling time - time before output within threshold

● Robustness
○ Stability and performance variations in the presence of plant changes

Rise 
time

Time

O
u

tp
u

t

Overshoot

Settling time

Steady state error



Tuning PID 
● Many heuristics, my favorite

○ Initialize Kd = Ki = 0

○ Iterate

■ Increase Kp until oscillation 

■ Decrease Kp by 2

■ Increase Ki until just before loss of stability

■ Increase Kd to reduce oscillation 



Tuning PID 

Debugging / Trade-offs present through 

subtle interactions

Effect
Increasing Term 

Rise Time Overshoot SS error

Proportional decrease increase decrease

Integral decrease increase eliminate

Derivative decrease

Rise 
time

Time

O
u

tp
u

t

Overshoot

Steady state 
error



Takeaways
● Controllers can

○ Make your robot respond faster
○ Abstracts physics away from desired response

● Close-loop
○ Feedback helps to adjust/tolerate unexpected world

● PID Controllers
○ Most controllers in the world, simple, effective
○ Setting K constants and sampling time are the keys!


